KamLAND-Zen実験における 信号波形情報を用いた背景事象除去の研究

東北大学理学研究科物理学専攻 蜂谷尊彦 2016年2月29日 ICEPPシンポジウム

ニュートリノのマヨラナ性

- ・ニュートリノ振動の発見
 >ニュートリノは僅かに質量を持つ
- ニュートリノは電荷を持たない
 $\nu = \overline{\nu} \ \overline{\nu} \ \overline{\nu} \ \overline{\nu}$ 可能性がある
 - マヨラナ性
- マヨラナ性があると
 - 通常のニュートリノの軽い質量を 自然に説明するために、重い右巻 きニュートリノを仮定できる
 - シーソー機構*
 - ・レプトン数非保存な反応が可能
 - 物質・反物質の非対称を生成

マヨラナ性検証手段:

ニュートリノを伴わない二重 β 崩壊($0\nu\beta\beta$)

*Yanagida, 1979

Gell-Mann, Ramond and Slansky, 1979 Minkowski, 1977

二重β崩壊

 通常の二重β崩壊はveを2つ放出する (2vββ)

 ニュートリノが質量を持ちマヨラナ粒子 ならばveを放出しない崩壊が可能 (0vββ)

- 極めて稀な崩壊
 - 探索には数百から数千kgの原 子核が必要
 - 探索を妨げない低放射能環境 が必要

Kamioka Liquid Scintillator Anti-Neutrino Detector

KamLAND-Zen実験

- ¹³⁶Xe(Q=2.5 MeV)を用いた0νββ探 索実験
- KamLANDにXe溶解液体シンチレー タ(Xe-LS)を導入
- KamLAND
 - 既に運用されていた検出器
 - ・素早い実験開始
 - ・ 極低放射能なLS(Outer-LS)
 - 外部γ線対策
 - 巨大検出器
 - 拡張可能性: ミニバルーンを 交換して標的を増やせる
- マヨラナ有効質量に対して最も厳しい制限を与えている
 - $\langle m_{\beta\beta} \rangle < 140-280 \text{ meV}$ $\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 < m_{\beta\beta} >^2$

これからの計画

• KamLAND-Zen 800

- ミニバルーンを入れ替る
 - ・現行よりも低放射能に
 - ²³⁸U量目標O(10⁻¹²)g/g
 - ・現行よりも大きく
 - Xe量約2倍(800 kg)
- 2016年開始予定
- KamLAND2-Zen
 - 集光量約5倍增: 2νββ対策
 - 高量子効率な光電子増倍管
 - ・ 集光ミラー(次の講演者:林)
 - ・高発光、高透明なLS
 - Xe量1 ton
 - 目標感度: $\langle m_{\beta\beta} \rangle = 20 \text{ meV}$
 - 逆階層構造領域を横断
- ・オプション: 発光性フィルム
 - ²¹⁴Bi対策(²¹⁴Poα線タグ率を改善)

K. A. Olive et al., Chin. Phys. C 38 (2014) 090001

フィルム中の²¹⁴Bi

- α線がフィルムを透過できない
 - ・タグ率は約50%まで落ち込む
 - 有効体積を縮小させている

- ・フィルムが光ればタグできる!!!
- 発光性バルーンフィルムの研究開発が 進行中
 - ポリエチレンナフタレート(PEN)製
 フィルムを使用
 - ・ タグ率99.7%を見込む

²¹²Bi-²¹²Poパイルアップ背景事象

KamLAND2-Zen(発光性フィルム使用時)の年間予想事象数 発光性フィルムの²³²Th量分析上限値5×10⁻¹² g/g から計算

²¹⁴ Bi	¹⁰ C	⁸ B	2νββ	²¹² Bi-Po	BG Total	$0 uetaeta\ \langle m_{etaeta} angle$ =20meV	
0.45	3.4	1.6	0.78	3.0	9.2	0.63	

新しいDPフィッタの開発

- 時間分解能を改善してパイルアップBGを除去する
- 現行のDPフィッタ
 - ・光電子増倍管(PMT)の信号波形の合計を取 り扱う
 - 陽子崩壊探索($p \rightarrow \bar{\nu}K^+$)のために開発され た: 高エネルギー向け(O(100 MeV))
- 新開発のDPフィッタ
 - 0νββ領域の信号はPMTあたりの期待ヒット 数が1以下
 - 各PMTのヒットタイミングをそれぞれ決定し、 その分布を波形として扱う
 - 各PMTの1 p.e.波形のばらつきに影響さ れにくい
 - パラメータ
 - *E_p*: 先発信号のエネルギー

 - *T_p*: 先発信号時刻
 E_d: 後発信号のエネルギー
 - ΔT: 先発信号と後発信号の時間差

新開発DPフィッタの性能評価方法

- データセット
 - 2013年12月-2015年8月
- ミニバルーン周辺の事象からパイルアッ プ事象をタグする
 - 検出器中心からの距離R:
 - 100-200 cm
- エネルギー: 2.3-2.7 MeV
 - 0νββ領域

・ 遅延同時計測からの予想量とDPフィッタ でタグした量を比較する。

新開発DPフィッタの適用結果

 $0.17\% (\Delta T \ge 10 \text{ ns})$

 E_{d} (MeV)

0.8

0.6

0.4

 0_0^{L}

20

 10^{2}

10

100

80

60

 ΔT (ns)

10 ns以降で一致していることを確認!! パイルアップBGは改善前の半分になる。

KamLAND2-Zen(発光性フィルム使用時)の年間予想事象数

11

²¹⁴ Bi	¹⁰ C	⁸ B	2νββ	²¹² Bi-Po	BG Total	0νββ
0.45	3.4	1.6	0.78	3.0 1.5	7.7	0.63

まとめと展望

- KamLAND-Zenはニュートリノを伴わない二重ベータ崩 壊探索を行っている実験
- ・次期計画ではXeを2倍増量: KamLAND-Zen 800
- ・将来計画は集光量5倍増: KamLAND2-Zen
- ・高感度化にはフィルム由来の背景事象除去が必要
 ²¹²Bi⁻²¹²Poパイルアップ
 - ◆ つはDPフィッタの改善を試みた
 ◆ 2-Zenの光量ならさらに改善する可能性有り
 - α / β 波形の違いも利用したい

