J-PARC KOTO実験におけるビーム 外縁部を覆う高中性子環境下で動作 する光子検出器の性能評価

京都大学 高エネルギー研究室 篠原智史 (M2) 2016/02/29

•KOTO実験

- ・ビーム下流光子検出器とK_L→2π⁰ 背景事象
- ・ アクリル検出器の原理
- •電子ビームを用いたアクリル検出器の応答
- ・新検出器、BHGCのデザイン
- ・2015年KOTO実験でのBHGCの評価

3

KOTO実験

- •KOTO実験@J-PARC
- $K_L \rightarrow \pi^0 v \bar{v}$ 探索実験 - 分岐比の標準理論予想: ~3×10⁻¹¹ - 理論の不定性も小さい(2%) →新物理に対して高い感度を持つ
- 2γ + Nothingでsignalを同定
 - 2γ→Cslカロリメータ
 - Nothing → Veto検出器

KOTO検出器外観

ビーム下流の光子検出器

ビーム下流にビームホールを抜けるγを捉えるための光子検
 出器 (BHPV) が設置されている

- BHPVはビーム外縁部に対して感度が低いことがわかっている

新検出器への要求

- K_L→2π⁰ 崩壊でBHGCが削減すべき背景事象
 検出すべきγ
 - エネルギー : 1 GeV 以上がメイン
 - 覆うべき位置 : 約50 cm 四方
- ・ 設置位置のビーム環境
 - KOTO実験はハイレート環境での実験
 - 検出器の平均レートが高いと、
 偶発的に信号事象をvetoしてしまう
 確率が増える (accidental loss)

飛来する粒子	レート (MHz)
中性子	17
γ	6.3
KL	0.13
電子、陽電子	0.55

信号事象	
Veto 信号	
Vetoの時間窓	

アクリルチェレンコフ検出器

・鉛とアクリルを用いたチェレンコフ型光子検出器 – チェレンコフ閾値と全反射条件の2つを用いる

➡ 中性子由来の反応を減らすことができる

アクリル検出器実機デザインにむけて

・BHGC背景事象削減力の試算

- シミュレーションに検出器応答を組み込むことが必要
- -ビームテスト(e⁻:500 MeV/c)の結果から応答を理解

残存背景事象数とデザインの関係

・パラメーターを変えてシミュレーションを行い削減力を比較 –背景事象の削減力と構造体の簡易さを加味してデザインを決定

実機デザインに見込める性能

決定したデザインのもとでの背景事象削減力 - 信号事象1イベント(標準理論感度)に対しての背景事象数で評価

	検出すべきγ 1 GeV 以下	検出すべきγ 1 GeV 以上	
w/o BHGC	0.52±0.01	1.38±0.26	×0.42
w/ BHGC	0.48±0.01	0.17±0.03	×0.12

・背景事象の削減:

BHPVへの入射エネルギー1 GeV以上のγによる背景事象を 90%近く削減可能なデザイン

信号事象1イベント(標準理論感度)に対して抑えられている

2015年度KOTO実験でのBHGCの評価

- デザインをもとにBHGCを製作、2015年3月にインストール
- KOTO実験はBHGCと共に物理データを取得
- デザイン通りの性能を保証するため
- 1.BHGCの発光量を確認
 - -ビームテスト時の光量と比較し、 検出器の性能を確認
 - 長期安定性についても確認
- 2.カウンティングレートを算出
 - シミュレーションと比較し、検出器の 性能を確認
 - accidental lossを試算

BHGCの光量測定

- ・ 高速荷電粒子を選定
- ・両読みの合計光量で評価

 平均光量は約20p.e.
- →ビームテスト時と同等の光量を 獲得
- →想定通りの動作を保証
- ・長期安定性についても保証
 - -5%程度で光量は安定
 - 放射線損傷はみられない

→<u>デザイン通りの背景事象の削減を期待</u>

カウンティングレート

- →低く抑えられている
- 100 kW (KOTOデザイン値) のビーム強度 accidental loss → 5%程度
- デザイン強度でも十分運用が可能であることがわかった

- KOTO実験に用いる新たな光子検出器として、鉛とアクリルで 構成された光子検出器 Beam Hole Guard Counter (BHGC)
 を提案し、開発と性能評価を行った。
 - 新検出器の要求を明らかにした
 - ビームテストによりアクリル検出器の応答を理解
 - 実機のデザインを決定、信号事象1イベント(標準理論感度)に対して小 さく抑えられることがわかった
 - -2015年3月にBHGCは実験エリアにインストール、物理データを取得
 - 光量測定を行い、デザイン通りの背景事象の削減を期待
 - レートは設計通り、accidental lossも小さく抑えられている
- ・今後、BHGC含めた物理解析を行っていくことで、 $K_L \rightarrow \pi^0 v \overline{v}$ 崩壊探索を行う

KOTO実験

J-PARCで行なわれている 国際共同実験

- J-PARCのハドロン実験
 施設で実験中
- ・ $K_L \rightarrow \pi^0 v \overline{v}$ 崩壊の探索を 目的とした実験

コラボレーションミーティング 時の写真@台湾

@J-PARC

] ハドロン実験施設

実機デザインに見込める性能

決定したデザインのもとでの背景事象削減力 - 信号事象1イベント(標準理論感度)に対しての背景事象数で評価

	検出すべきγ 全エネルギー	検出すべきγ 1 GeV 以上	
w/o BHGC	1.90±0.27	1.38±0.26	×0.40
w/ BHGC	0.66±0.03	0.17±0.03	×0.12

・背景事象の削減:

BHPVへの入射エネルギー1 GeV以上のγによる背景事象を 90%近く削減可能なデザイン

信号事象1イベント(標準理論感度)に対して抑えられている

- 信号事象1イベント(標準理論感度)
 に対するK_L→2π⁰崩壊による
 背景事象
- 検出すべきγのBHPVへの入射
 エネルギー
 - -1 GeV以下: 0.52 ± 0.01
 - -<u>1 GeV以上:1.38 ± 0.26</u>
 - →高エネルギー領域に高い感度が必要
- 検出すべきγをBHPV後方まで
 外挿した際の拡散程度
 - 約 50 cm四方に渡り広がっている
 - →広範囲を覆う必要

検出すべき γ のBHPV後方での拡散具合 $\begin{pmatrix} 0 \\ -200 \\ -200 \\ -200 \\ -100 \\ 0 \\ 0 \\ -100 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -200 \\ -200 \\ -100 \\ -20$

Events

 ・飛来する粒子のレートとエネルギー (100kWビーム時)

粒子	レート (MHz)
中性子	17
γ	6.3
KL	0.13
電子、陽電子	0.55

- 中性子やγが支配的 →平均エネルギー
 - ・中性子 :~100 MeV
 ・ γ :~10 MeV

電子ビームを用いたアクリル検出器の評価

- 電子ビームによるアクリル検出器の動作試験
 - $-e-:500 \text{MeV/c} \rightarrow \beta \doteq 1$
- •本番、実機製作にむけて指標となる
 - アクリル検出器の発光量測定 – 発光量のビーム位置応答性測定
- ・シミュレーションと比較することで応答

ビームテストで使用したモジュール

ビームテストでの回路図概略

シミュレーションとの比較

- ・シミュレーション
 - チェレンコフ光の発生
 - 測定した透過率に基づく ray tracing
 - -獲得光量に対する補正係数
 - ・ PMTの量子効率を反映
- 光量分布を測定
 - 補正後のシミュレーションの光量分布はデータを概ね再現

	補正係数
PMT L (x 正側)	1.15
PMT R (x 負側)	1.03

→得られた補正係数はPMTの量子 効率の違いで説明できる範囲

電子ビームにより得ら れた典型的な波形

キャリブレーション

ポアソン分布、ガウシアン たたみ込み

• 角度依存性

残存背景事象数とデザインの関係

この結果から、鉛厚は10 mm、鉛-アクリルの単層構造、アクリ ル中心とビーム中心の距離は190 mmに決定

accidental loss

実機デザインに見込める性能

- カウンティングレート予測
 プラスチックシンチレータとも
 レートを比較
 - レートはアクリル検出器の方が 0.67倍と低く抑えられている
 - 背景事象削減力は双方とも 変わらないことを確認済み

→アクリル検出器の優位性

33 kWビームのときのカウンティングレート

PtZ

実機デザインに見込める性能

• 背景事象削減力とカウンティングレート予測

KL->2pi0崩壊の背景事象数まとめ						
w/ BHPV	2.26±0.27	有感領域内	0.36±0.05			
		有感領域外	1.90±0.27	1 GeV以上	1.38±0.26	
w/(BHPV	1.00±0.06	有感領域内	0.35±0.05			
+BHGC)		有感領域外	0.66±0.03	1 GeV以上	0.17±0.03	

1p.e. キャリブレーション

モジュール上部に取り付けたLEDで較正

1p.e. gainの安定性確認

- 物理ラン中に数ランについて1p.e. gainの安定性について調べた
- LEDは10Hzで光らせてあるため、イベント数を稼ぐために数
 ラン分をまとめて解析

- 1ラン30min~50min

- 4-6月にわたって数%
 で安定
- PMTは安定的に動作 している

BHGCの光量測定

• Cherenkov光の発光量: $\frac{d^2N}{dxd\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$

→βの不定性を減らすことが重要

10³

10²

10

Beam loading effect

 1 p.e. gainがbeam on spill時に変動して いないか

	1 p.e. gain (counts/p.e.)
off spill	83.5±1.70
on spill	86.4±1.80

Accidental loss

物理トリガーからBHGCのvetoレートを計算

- accidental lossを評価

- BHGC 8chのorのレート – 3.6 MHz
- veto windowを15 ns
 とすると、accidental lossは - 5.3 %

・ビーム環境が悪いにもかかわらず低いaccidental lossを達成

BHGC実機のデザイン

シミュレーションを行いデザインを最適化

- その他検出器のvetoをかけた状態でBHGCの背景事象削減力、構造 体の簡易さを加味する

BHGCでvetoする前のKL->2pi0崩壊の背景事象数まとめ							
BHPVと関 係ないもの	6.23±0.43						
w/o BHPV	98.4±6.1						
w/ BHPV	2.26±0.27	有感領域内	0.36+0.05	■ 新検出器B 減すべき背	HGCが削 「景事象		
		有感領域外	1.90±0.27	1 GeV以上	0.52±0.01		
				1 GeV以下	1.38±0.26		

	2013:	年5月		Tig	ht threshold a	nd upgraded I	МВ
BHPVと関係 ないもの	6.23±0.43			BHPVと関係 ないもの	0.72±0.08		
w/o BHPV	98.4±6.1			w/o BHPV	6.90±1.08		
w/ BHPV	2.26±0.27	有感領域内	0.36±0.05	w/ BHPV	0.20±0.06	有感領域内	0.03±0.01
		有感領域外	1.90±0.26			有感領域外	0.17±0.06
w/(BHPV +BHGC)	1.00±0.06	有感領域内	0.35±0.05	w/(BHPV +BHGC)	0.10±0.06	有感領域内	0.03±0.04
		有感領域外	0.66±0.03			有感領域外	0.07±0.04

カウンティングレート

 物理ランでの accidental loss: 4.7 % (29 kWビーム)
 ハイレート環境にもかかわらず、accidental loss を5 %以下と小さくする ことができた

- BHGCが削減すべき背景事象
- K_I->2π⁰崩壊

odd (2gamma->違うπ0)

	electron	proton	pion
Čerenkov th.	$0.46 \mathrm{MeV}$	$839 \mathrm{MeV}$	$125 \mathrm{MeV}$
全反射 th.	$1.0 \mathrm{MeV}$	$1.88 { m GeV}$	$279 \mathrm{MeV}$

1.1: Čerenkov スレショルドおよび全反射スレショルド

TDC分布

- threshold 30 mV (1p.e. ~20mV)
- meanの差は~3.5 ns
- ・遠い方が幅が太くなる: 0.48ns → 0.64ns
- 分布はほとんど対称

オシロ

・オシロでとった波形

thresholdによる違い

• 閾値を超える時間をオシロの波形から計算

	x -2	20	x+20		v
閾値	PMT L	PMT R	PMT L	PMT R	
-0.03 V	7.8	10.9	11.22	7.69	0.121
-0.5 V	10.14	13.44	13.65	10.24	0.119
tdc					0.119

・閾値を変えても結果はかわらず

MCで再現するか

- Path Length ÷ アクリル中の光速(0.2m/ns)
 - チェレンコフ光発生からアクリル端面までの到達時間
 - TDC分布とおおまかには一致するはず
 - 下図は光量として観測されたチェレンコフ光全ての到達時間分布(ns)
 - -(出てくる図は全てPMT x正方向のもの)

MC チェレンコフ first hit

- ・光量として観測されたチェレンコフ光のうち一番早いもの
- ・時間差は~2.7 ns (→データでは3.5 ns)
- TDC分布と形は似ている

MC third hit

- ・光量として観測されたチェレンコフ光のうちの3番目にアクリル 端面に到達したもの
- ・尾をひくような分布
- •ピークの時間差は~2.7 ns

MC 7th hit

・光量として観測されたチェレンコフ光のうちの7番目のもの
・時間差??

その他

- ・ 鉛厚-バックグラウンドの関係
- ・デザインでのgamma efficiency
- ・ビームテストシミュレーションでトリガーシンチを入れた場合

鉛厚-残存BG数との関係

- 1GeV以上ではBGは減少、1GeV以下では1cm厚が極小値を 持っている
- ・totalで1cm厚以上は変わっていない

- 統計エラーが大きい

鉛厚 (cm)	1 GeV以下	1 GeV以上	全体
0.25	0.490 ± 0.005	0.283 ± 0.098	0.773 ± 0.098
0.5	0.486 ± 0.005	0.236 ± 0.088	0.722 ± 0.088
1	0.483 ± 0.005	0.173±0.028	0.656 ± 0.028
2	0.490 ± 0.005	0.162 ± 0.028	0.652 ± 0.029
3	0.498 ± 0.005	0 .157±0.021	0.655 ± 0.021

Gamma Eff

- 実機デザインでのgammaに対するeff. curve
- 1 GeV> gamma で~75%

今までのsimにトリガーシンチを足した

16/02/29

・ scinti.を入れると高光量側が増えている

Data and MC (before after)

- 左図: before 右図: after
- トリガーを入れると高光量側で分布が合う方向にいった
 ただし十分ではない

