陰イオンを用いた µ TPCの基礎試験

池田智法 神戸大学(NEWAGE)

22nd ICEPP シンポジウム 2016.3.2

http://pics-about-space.com/milky-way-galaxy-nasa?p=1#

ガス検出器と暗黒物質実験の世界情勢

DRIFT

- MWPC(2mm pitch)
- First started gas detector

- Underground
- Low background
- Large size(~1m³)

MIMAC

MicroMegas(~424um pitch)

μ-ΤΡϹ

- Underground
- •10×10×25 cm³

25cm

1m

• CCD(256um pitch) • 2D track • Head/tail recognition • Underground

- **NEWAGE**
- •μ-PIC(400um pitch)
- 3D track
- Direction-sensitive limit
- Underground

<u>New Generation WIMP Search with</u> an <u>A</u>dvanced <u>G</u>aseous Tracker <u>E</u>xperiment

• µTPCを用いた方向に感度を持つ暗黒物質探索実験

<u> μ TPC</u>: μ -PIC + GEM system

- 体積:30×30×41 cm³
- 使用ガス: C<u>F</u>4(76 torr)

2016/03/02

22nd ICEPP Symposium

Direction-Sensitive

WIMP-search

NEWAGE0.3b'

• Gradation color: detection efficiency

(K.Nakamura et.al, PTEP(2015)043F01s)

μTPCのバックグラウンドイベント

μTPC断面図

ロ μ TPCの主なバックグラウンド

- 高エネルギー領域では⑦ μ -PICのガラス繊維からくる α 線 (U/Th系列)
- 低エネルギー領域では $C \rightarrow \mu$ -PICのカラス繊維からくる α 線(U/IN糸列)

Self Triggering TPC

セルフトリガーモードのTPCではZの絶対位置は決定できない

陰イオンを用いたTPCのZの絶対位置決定

DRIFTグループがMWPC-TPCでのZの絶対位置決定に成功

・ 陰イオンガスCS2にO2加えることでドリフト速度の異なる陰イオンが複数生成される

[[]Physics of the Dark Universe 9-10(2015)1-7]

陰イオンガスの候補

CF4(electron drift(normal) gas)

- DM実験でターゲットとしても使用 ・ ガスゲイン 3000 (76Torr)

- 典型的なドリフト速度:~cm/µs ・ プリアンプ 160mV/pC(ASDchip)

Negative Ion Gas

CS₂

- 有毒、揮発性、可燃性
- 電子親和力0.89eV
- MWPCでの実績がある
- DM実験ではCF₄ガスを加える必 • 要あり
- ガスゲインの要請

with amplifier(1V/pC)

SF₆

- 無毒、不揮発性、不燃性
- 電子親和力1.1eV
- 絶縁ガスとして用いられる
- THGEMでの実績がある

[N.Phan talk at CYGNUS2015, June 2015]

ガスゲインの要請

典型的なドリフト速度: <u>10⁻²cm/µs</u>

readout

ガスゲイン

GEM & Induction依存

□ ガスゲイン ~2000(20Torr)

エネルギー閾値は約2倍悪化 → 後段のアンプを改良することで解消 LTARS2014 ASIC chip for LArTPC developed with KEK e-sys group

□ 20Torrでも十分なガスゲイン

• 原子核の飛跡距離が増加(CF₄76Torrで100keVの原子核で約2mm)

→ 低エネルギー領域での角度分解能の向上

□ 現在の測定環境でも100keV程度の原子核反跳イベントならマイノリティピークは 観測可能

Prototype $\mu TPC(28cmDrift)$


```
Waveform Feature
```


Summary

- NEWAGEでは更なる感度向上のためにバックグラウンド 除去の研究が行われている
- ・ 陰イオンガスSF₆を用いたµ-PIC+GEMの試験を行った
- 20Torrでガスゲイン2000を達成した(100keV以上の原子核 でマイノリティピークが観測できる)
- 低気圧下での稼働が可能なため、角度分解能の向上が期 待できる
- 今後SF。を用いたµTPCでマイノリティピークの観測へ

Back up

Amplifier for liquid Argon TPC

- Development of LTARS ASIC
 - pre-amp. & shapers in a chip
 - high density (32ch I n a chip)
 - power supply voltage ±0.9V
 - ENC ~2000@300pF
 - conv.gain ~9V/pC

(developed with KEK e-sys group, one of Open-it projects <u>http://openit.kek.jp/</u> project/LTARS2014/LTARS2014)

LTARS2014 ASIC chip (5mm x 5mm)

Spin dependent(SD) cross section

- The SD cross section is written using $\sigma_{\rm SD}$ as

$$\sigma_{\chi-N}^{\rm SD} = \sigma_{\chi-p}^{\rm SD} \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \frac{\lambda^2 J(J+1)}{0.75}$$

Isotope	J	Abundance($\%$)	$\mu_{ m mag}$	$\lambda^2 J(J+1)$	unpaired nucleon
$^{1}\mathrm{H}$	1/2	100	2.793	0.750	proton
$^{7}\mathrm{Li}$	3/2	92.5	3.256	0.244	proton
$^{11}\mathrm{B}$	3/2	80.1	2.689	0.112	proton
$^{15}\mathrm{N}$	1/2	0.4	-0.283	0.087	proton
$^{19}\mathrm{F}$	1/2	100	2.629	0.647	proton
23 Na	3/2	100	2.218	0.041	proton
$^{127}\mathrm{I}$	5/2	100	2.813	0.007	proton
^{133}Cs	7/2	100	2.582	0.052	proton
$^{3}\mathrm{He}$	1/2	1.0×10^{-4}	-2.128	0.928	neutron
$^{17}\mathrm{O}$	5/2	0.0	-1.890	0.342	neutron
$^{29}\mathrm{Si}$	1/2	4.7	-0.555	0.063	neutron
$^{73}\mathrm{Ge}$	9/2	7.8	-0.879	0.065	neutron
129 Xe	1/2	26.4	-0.778	0.124	neutron
$^{131}\mathrm{Xe}$	3/2	21.2	0.692	0.055	neutron
^{183}W	1/2	14.3	0.118	0.003	neutron

CS₂試験 @Occidental collage

∆GEM 依存

for 38 Torr

