Neutrino Experiments with Nuclear Emulsion - OPERA & J-PARC T60 -福田 努(東邦大学) Tsutomu Fukuda (Toho Univ.)

第22回 ICEPPシンポジウム, 2016年2月29日, 白馬村岳美荘

Result from OPERA

			Austria Budapest
Belgium ULB Brussels	Italy Bari Bologna	Korea Jinju	CERN and CERN CERN
Croatia IRB Zagreb	LNF Frascati L'Aquila LNGS	Russia INR RAS Moscow	732km
France LAPP Annecy IPHC Strasbourg	Naples Padova Rome Salerno	ITEP Moscow SINP MSU Moscow JINR Dubna	Monaco 17 GeV Isotaži Ellon Isotaži Ellon Isotaži Ellon Isotaži Ellon Isotaži Ellon Isotaži Ellon
Germany Hamburg	Japan Aichi edu. Kobe	Switzerland Bern	Corse (Corsus) Lisola Mitgdalena
Israel Technion Haifa	Nagoya Toho Nihon	Turkey METU Ankara	Sardgrana (Sardina)

W. Jak

1 65

PRL 115, 121802 (2015)

S

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

N. Agafonova,¹ A. Aleksandrov,² A. Anokhina,³ S. Aoki,⁴ A. Ariga,⁵ T. Ariga,⁵ D. Bender,⁶ A. Bertolin,⁷ I. Bodnarchuk,⁸ C. Bozza, ⁹R. Brugnera, ^{7,10}A. Buonaura, ^{2,11}S. Buontempo, ²B. Büttner, ¹²M. Chernyavsky, ¹³A. Chukanov, ⁸L. Consiglio, ² N. D'Ambrosio,¹⁴ G. De Lellis,^{2,11} M. De Serio,^{15,16} P. Del Amo Sanchez,¹⁷ A. Di Crescenzo,² D. Di Ferdinando,¹⁸ N. Di Marco,¹⁴ S. Dmitrievski,⁸ M. Dracos,¹⁹ D. Duchesneau,¹⁷ S. Dusini,⁷ T. Dzhatdoev,³ J. Ebert,¹² A. Ereditato,⁵ R. A. Fini,¹⁶ F. Fornari,^{18,20} T. Fukuda,²¹ G. Galati,^{2,11} A. Garfagnini,^{7,10} J. Goldberg,²² Y. Gornushkin,⁸ G. Grella,⁹ A. M. Guler,⁶ C. Gustavino,²³ C. Hagner,¹² T. Hara,⁴ H. Hayakawa,²⁴ A. Hollnagel,¹² B. Hosseini,^{2,11} K. Ishiguro,²⁴ K. Jakovcic,²⁵ C. Jollet,¹⁹ C. Kamiscioglu,⁶ M. Kamiscioglu,⁶ J. H. Kim,²⁶ S. H. Kim,^{26,*} N. Kitagawa,²⁴ B. Klicek,²⁵ K. Kodama,²⁷ M. Komatsu,²⁴ U. Kose,^{7,†} I. Kreslo,⁵ F. Laudisio,⁹ A. Lauria,^{2,11} A. Ljubicic,²⁵ A. Longhin,²⁸ P. F. Loverre,^{23,29} A. Malgin,¹ M. Malenica,²⁵ G. Mandrioli,¹⁸ T. Matsuo,²¹ T. Matsushita,²⁴ V. Matveev,¹ N. Mauri,^{18,20} E. Medinaceli,^{7,10} A. Meregaglia,¹⁹ S. Mikado,³⁰ M. Miyanishi,²⁴ F. Mizutani,⁴ P. Monacelli,²³ M. C. Montesi,^{2,11} K. Morishima,²⁴ M. T. Muciaccia,^{15,16} N. Naganawa,²⁴ T. Naka,²⁴ M. Nakamura,²⁴ T. Nakano,²⁴ Y. Nakatsuka,²⁴ K. Niwa,²⁴ S. Ogawa,²¹ A. Olchevsky,⁸ T. Omura,²⁴ K. Ozaki,⁴ A. Paoloni,²⁸ L. Paparella,^{15,16} B. D. Park,^{26,‡} I. G. Park,²⁶ L. Pasqualini,^{18,20} A. Pastore,¹⁵ L. Patrizii,¹⁸ H. Pessard,¹⁷ C. Pistillo,⁵ D. Podgrudkov,³ N. Polukhina,¹³ M. Pozzato,^{18,20} F. Pupilli,²⁸ M. Roda,^{7,10} T. Roganova,³ H. Rokujo,²⁴ G. Rosa,^{23,29} O. Ryazhskaya,¹ O. Sato,^{24,§} A. Schembri,¹⁴ W. Schmidt-Parzefall,¹² I. Shakirianova,¹ T. Shchedrina,^{13,11} A. Sheshukov,⁸ H. Shibuya,²¹ T. Shiraishi,²⁴ G. Shoziyoev,³ S. Simone,^{15,16} M. Sioli,^{18,20} C. Sirignano,^{7,10} G. Sirri,¹⁸ A. Sotnikov,⁸ M. Spinetti,²⁸ L. Stanco,⁷ N. Starkov,¹³ S. M. Stellacci,⁹ M. Stipcevic,²⁵ P. Strolin,^{2,11} S. Takahashi,⁴ M. Tenti,¹⁸ F. Terranova,^{28,31} V. Tioukov,² S. Tufanli,^{5,||} P. Vilain,³² M. Vladymyrov,^{13,¶} L. Votano,²⁸ J. L. Vuilleumier,⁵ G. Wilquet,³² B. Wonsak,¹² C. S. Yoon,²⁶ and S. Zemskova⁸

(OPERA Collaboration)

arXiv:1507.01417

PRL 115, 121802 (2015)

S

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

N. Agafonova,¹ A. Aleksandrov,² A. Anokhina,³ S. Aoki,⁴ A. Ariga,⁵ T. Ariga,⁵ D. Bender,⁶ A. Bertolin,⁷ I. Bodnarchuk,⁸ C. Bozza,⁹ R. Brugnera,^{7,10} A. Buonaura,^{2,11} S. Buontempo,² B. Büttner,¹² M. Chernyavsky,¹³ A. Chukanov,⁸ L. Consiglio,² N. D'Ambrosio,¹⁴ G. De Lellis,^{2,11} M. De Serio,^{15,16} P. Del Amo Sanchez,¹⁷ A. Di Crescenzo,² D. Di Ferdinando,¹⁸ N. Di Marco,¹⁴ S. Dmitrievski,⁸ M. Dracos,¹⁹ D. Duchesneau,¹⁷ S. Dusini,⁷ T. Dzhatdoev,³ J. Ebert,¹² A. Ereditato,⁵ R. A. Fini,¹⁶ F. Fornari,^{18,20} T. Fukuda,²¹ G. Galati,^{2,11} A. Garfagnini,^{7,10} J. Goldberg,²² Y. Gornushkin,⁸ G. Grella,⁹ A. M. Gular,⁶ C. Gustavine,²³ C. Hagner,¹² T. Hare,⁴ H. Havekave,²⁴ A. Hollnegel,¹² P. Hosseini,^{2,11} K. Ishiguro,²⁴ (Received 7 July 2015; published 17 September 2015)

The OPERA experiment was designed to search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of $\tau = \nu_{\mu} \rightarrow \tau_{\tau}$ appearance, achieved with four candidate events in a subsample of the data, was provided up on this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in appearance mode with a significance larger than 5σ .

DOI: 10.1103/PhysRevLett.115.121802

PACS numbers: 14.60.Pq

(OPERA Collaboration)

arXiv:1507.01417

The OPERA experiment

Oscillation Project with Emulsion tRacking Apparatus

Commissioning-2006

CERNからニュートリノビームをテスト照射。 OPERAで初めて原子核乾板上にニュートリノ反応からの飛跡を検出。

Technical improvements ・ Challenge in OPERA → 大量のフィルム解析

Analysis status

- ν beam: 5year (965days),
 17.97 x 10¹⁹ p.o.t. (80% of proposal)
- 7041 neutrino events located.
 6682 events decay searched.

Analysis status

- ν beam: 5year (965days),
 17.97 x 10¹⁹ p.o.t. (80% of proposal)
- 7041 neutrino events located. 6682 events decay searched.

全てのTopology, kinematical cut をクリア

Background reduction核破砕片探索によるハドロンの2次反応バックグラウンドの低減

大角度飛跡自動認識装置の開発

核破砕片があればハドロン2次衝突反応→無ければ崩壊事象

大角度飛跡を自動検出できる装置を新たに開発し、実際にハドロン反応の核破砕片付随率を実験で導出。 検出したタウニュートリノ反応に適用し、全てのイベントに核破砕片が付いていないことを確認した。 **15**

Oscillation analysis

Expected signal and background events for the analyzed data sample

Channel		Expected b	Expected signal	Observed	od		
Unanner	Charm	Had. re-interac.	Large μ -scat.	Total	Expected signal	Observed	eu
$\tau \to 1h$	0.017 ± 0.003	0.022 ± 0.006	_	0.04 ± 0.01	0.52 ± 0.10	3	
$\tau \to 3h$	0.17 ± 0.03	0.003 ± 0.001	—	0.17 ± 0.03	0.73 ± 0.14	1	
$\tau ightarrow \mu$	0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1	
$\tau \to e$	0.03 ± 0.01	—	—	0.03 ± 0.01	0.78 ± 0.16	0	
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5)

5 ν_τ events 検出。BG=0.25 events.
 → バックグラウンドで説明できる確率=1.1 X 10⁻⁷
 → Significance = 5.1 σ, Discovery of ν_τ Appearance !

"For the greatest benefit to mankind" acquired Nobel

Takaaki Kajita Arthur B. McDonald

2015 NOBEL PRIZE IN PHYSICS

Scientific Background on the Nobel Prize in Physics 2015

NEUTRINO OSCILLATIONS

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

n-

Super-Kamiokande's oscillation results were confirmed by the detectors MACRO [55] and Soudan [56], by the long-baseline accelerator experiments K2K [57], MINOS [58] and T2K [59] and more recently also by the large neutrino telescopes ANTARES [60] and IceCube [61]. <u>Appearance of tau-neutrinos in a muon-neutrino beam has been demonstrated on an</u> event-by-event basis by the OPERA experiment in Gran Sasso, with a neutrino beam from CERN [62].

Status of J-PARC T60

J-PARC' T'60

PI: T. Fukuda (Toho Univ.)

→ tsutomu.fukuda@ph.sci.toho-u.ac.jp

- The aim of T60 is a feasibility study and detector performance check to make a future plan.
- We will expand the scale of detector gradually, step by step.

2014. Nov – 2015. Mar

Status of T60

Feasibility study: 2kg Iron target ECC

Hybrid analysis with INGRID

2014. Nov - 2015. Mar

Status of T60

Feasibility study: 2kg Iron target ECC

1.4

Momentum p β (GeV/c)

1.6

0.2

0.6

20 40 Time difference (T_{INGRID}-T_{Emulsion})[sec]

-20

0

-40

2015. May - Jun

Status of T60

Feasibility study: 1.5kg Water target ECC

Water target emulsion chamber

Water Target ~ 1.5kg ightarrow 10-20 $\overline{
u}\,$ events

First observation of ν - Water interactions with Emulsion Detector

2016. Jan -

Detector Run: 60kg Iron target ECC

ν exposure : 2016 @SS floor end of Jan. → beam end Iron target (total~60kg : 500 μ m seg.) High statistics (4-6k *ν*_μ events) *ν*_e detection (30-40 *ν*_e CC events)

→ Data – MC comparison with high statistics to check the performance.

OPERA

- OPERA successfully collected data from 2008 to 2012. A total number of 17.97 x 10¹⁹ p.o.t. integrated (~80% of the nominal value).
- 5 ν_{τ} candidate events were found with 2.6 signal and 0.25 background events expected in the analyzed sample.
- Significance of the observation is **5.1** σ \rightarrow **Discovery of** ν_{τ} appearance in the CNGS beam.

J-PARC

- We are planning neutrino experiments **at J-PARC** to study low energy neutrino nucleus interactions with nuclear emulsion.
- First of all, we are carrying out a test experiment at J-PARC (T60) to check the feasibility and detector performance.
- We demonstrated neutrino event analysis, hybrid analysis with T2K near detector and detection of *ν*-water interactions.
- We will check the detector performance with high stat. and establish a detailed plan for physics run.

Hadron Production measurements

- To reduce uncertainly of neutrino flux (accelerator ν , atmospheric ν)
- Several 10 GeV/c hadron interactions is studied with nuclear emulsion.
- First, target is Carbon. Then Iron, Aluminum will be performed.

Hybrid Emulsion Detector

Detector that uses emulsion film tracking is being developed by ICRR, Kavli IPMU, Kyoto U., Toho U. + KEK, Nagoya U., Kobe U., Nihon U.

- Minimize material between tracker and target (large systematic effect for HARP)
- Compact size detector can be moved between different beam lines
- Detailed measurements of interaction topologies

Emulsion detector tracks connected to upstream and downstream particle ID detectors by silicon strip or pixel detectors

We plan to expose hadron beam at Fermilab/CERN in the near future.