整数係数・整数変数多項式関数への 勾配推定量子アルゴリズムについての研究

A study of quantum algorithms for gradient estimation of integer polynomials

水原慎一¹,飯山悠太郎²,浅井祥二¹ mizuhara@icepp.s.u-tokyo.ac.jp iiyama@icepp.s.u-tokyo.ac.jp shoji.asai@cern.ch

1 東京大学大学院理学系研究科物理学専攻

² 東京大学素粒子物理国際研究センター

導入

Jordan の量子アルゴリズムの Review

新しい量子勾配推定アルゴリズム

シミュレーションと実験結果

勾配を用いた最適化

▶ スケーリングの問題

ex. 局所解、次元の呪い、勾配自体の計算量、etc.

勾配の古典的クエリ計算量

$$\nabla f|_{\mathbf{x}=\mathbf{x_0}} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right)$$

^{1st order}
$$\left(\frac{f(\mathbf{x_0} + \delta \mathbf{e_1}) - f(\mathbf{x_0})}{\delta}, \dots, \frac{f(\mathbf{x_0} + \delta \mathbf{e_d}) - f(\mathbf{x_0})}{\delta} \right)$$

where $\{\mathbf{e}_i\}_{i=1}^d$: 標準基底

 $f(\mathbf{x_0}), f(\mathbf{x_0} + \delta \mathbf{e_1}), \dots, f(\mathbf{x_0} + \delta \mathbf{e_d})$ の値が必要。

 \implies 古典的には、 $d + 1 = \Omega(d)$ のクエリが少なくとも必要。

▶ 勾配を効率よく計算できるか?

▶ 実デバイスで勾配に関する量子計算を行い、理論と現実との 隔たりを狭める

▶ 勾配を<mark>効率よく</mark>計算できるか?

⇒Jordan の勾配推定量子アルゴリズム

⇒考案したアルゴリズムと密接に関係するので Review

▶ 実デバイスで勾配に関する量子計算を行い、理論と現実との 隔たりを狭める

Jordanの量子アルゴリズムの Review

Jordan の勾配推定量子アルゴリズム

First quantum algorithm for gradient estimation

Jordan は関数 f が局所的に線形である仮定で、f の勾配が $\mathcal{O}(1)$ の f のクエリによって推定できることを示した。[1]

関数

(

- 1. d 変数の実数値関数 $f : \mathbb{R}^d \to \mathbb{R}$
- 2. 局所的な線形性の仮定

$$f(m{x}+m{\delta})=f(m{x})+
abla f\cdotm{\delta}+\mathcal{O}(||m{\delta}||^2)$$

[$m{\delta}$ は微小量)

位相オラクル 実ベクトル δ をエンコードした計算基底状態 $|\delta\rangle$ に対し

$$egin{aligned} O_{2\pi Sf} &: \left| oldsymbol{\delta}
ight
angle &
ightarrow \exp\left(2\pi i Sf(oldsymbol{x}+oldsymbol{\delta})
ight) \left| oldsymbol{\delta}
ight
angle &\simeq \exp\left(2\pi i Sf(oldsymbol{x})
ight) \exp\left(2\pi i S
abla f\cdot oldsymbol{\delta}
ight) \left| oldsymbol{\delta}
ight
angle \end{aligned}$$

(あるスケール因子 S > 0 とした)

Jordan のアルゴリズムの手続き

Quantum gradient estimation

ト 状態の初期化
$$|\psi
angle = \mathcal{N} \sum_{oldsymbol{\delta} \in \mathsf{G}^d_{\mathsf{x}}} |\delta
angle$$

(x近傍のd次元のグリッドを G^d_x)

位相オラクル O_{2πSf} を作用

$$O_{2\pi Sf} |\psi\rangle = \mathcal{N} \sum_{\boldsymbol{\delta} \in G_x^d} \underbrace{\exp\left(2\pi i S \nabla f \cdot \boldsymbol{\delta}\right)}_{\text{global phase}} \exp\left(2\pi i S \nabla f \cdot \boldsymbol{\delta}\right) |\boldsymbol{\delta}\rangle$$

▶ 逆量子フーリエ変換を行い状態

 $|s\nabla f\rangle = |s\partial f/\partial x_1\rangle \dots |s\partial f/\partial x_d\rangle$

を観測する(*s* はあるスケール因子)

新しい量子勾配推定アルゴ リズム

勾配推定の新しい手法

典型的手法

不必要な項を微小量として切り落とす

► 近似 [1]:
$$f(\mathbf{x} + \delta) = f(\mathbf{x}) + \nabla f \cdot \delta + \mathcal{O}(\#\delta \#^2)$$

▶ 中心差分と近似 [2]:
$$f(\mathbf{x} + \boldsymbol{\delta}) - f(\mathbf{x} - \boldsymbol{\delta}) = 2\nabla f \cdot \boldsymbol{\delta} + \mathcal{O}(+\boldsymbol{\delta})$$

新しい手法

2πの整数倍の位相の対称性から不必要な項を切り落とす

テイラー展開時の係数が整数になる関数 f に対し

$$\exp\left(2\pi i \; \frac{f(\mathbf{x}+2^m \boldsymbol{\delta})}{2^{2m}}\right) = \exp\left(2\pi i \; \left(\frac{f(\mathbf{x})}{2^{2m}} + \frac{\nabla f \cdot \boldsymbol{\delta}}{2^m} + 1\right)\right)$$

考案したアルゴリズムの前提と手続き

前提

d 個の整数変数を持つブラックボックスな整数係数多項式 f $f:\mathbb{Z}^d_{2^{2m}} o\mathbb{Z}$

Algorithm

勾配を求める座標 $\mathbf{x} = (x_1, x_2, \ldots, x_d) \in \mathbb{Z}_{2^{2m}}^d$

- ▶ 入力: $\mathbf{x} \mod 2^m \in \mathbb{Z}_{2^m}^d$
- ▶ 出力: $\nabla f|_{\boldsymbol{X}=\boldsymbol{X}} \in \mathbb{Z}_{2^m}^d$
- ▶ クエリ計算量: <u>*O*(1)</u>
- 手続き

1. 状態の初期化
$$|\mathbf{x}\rangle := \bigotimes_{i=1}^{n} \left(|0\rangle^{\otimes m} | x_i \mod 2^m \right)$$

А

2. 部分的アダマール変換
$$\bigotimes_{j=1}^{\circ}(H^{\otimes m}\otimes I^{\otimes m})$$

4. 部分的逆量子フーリエ変換
$$\bigotimes(\mathsf{IQFT}_{(m)}\otimes I^{\otimes m})$$

Ь

アルゴリズムによる状態変化 回路図 $x_1 \mod 2^m$ $O_{2\pi \frac{f}{2^{2m}}}$ |**x** mod 2^m $|0\rangle$ H⊗m IQFT $x_d \mod 2^m$ 終状態 $\left(\left|\frac{\partial f}{\partial x_1}\right\rangle | x_1 \bmod 2^m \rangle\right) \otimes \ldots \otimes \left(\left|\frac{\partial f}{\partial x_d}\right\rangle | x_d \bmod 2^m \rangle\right)$

考案したアルゴリズムの特徴

新しい手法

2πの整数倍の位相の対称性から不必要な項を切り落とす

長所

1. クエリ計算量 = $\mathcal{O}(1)$

→変数の数だけでなく多項式の次数にも依らない

2. <u>決定論的</u>な出力分布 → ノイズ耐性があり実験に適する 短所

1. 強い仮定

整数変数・整数係数多項式

関数がブラックボックス

 <u>限られたビット数の ∇f の表現</u> → |∇f| が十分小さい時にのみ成功する

シミュレーションと実験結果

関数の選択と回路図

関数
$$f : \mathbb{Z}_{2^{2m}}^d \to \mathbb{Z}$$

Exp.1 $f_1(x) = -3x$, $x_0 \equiv 1$, $m = 4$, $d = 1$
 $\rightarrow \nabla f|_{x=x_0} = -3 \mod 16$

Exp.2
$$f_2(x) = -4x^2$$
, $x_0 = 1$, $m = 4$, $d = 1$
 $\rightarrow \nabla f|_{x=x_0} = -8 \mod 16$

(a) Exp.1

(b) Exp.2

Figure: トランスパイル前の回路図の外観¹

第45回量子情報技術研究会(QIT45)

関数の選択と回路図

Exp.3
$$f_3(x, y) = 4xy$$
, $\mathbf{x_0} = (0, 1)$, $m = 3$, $d = 2$
 $\rightarrow \nabla f|_{\mathbf{x} = \mathbf{x_0}} = (4, 0) \equiv (-4 \mod 8, 0 \mod 8)$

(c) Exp.3 Figure: トランスパイル前の回路図の外観¹

第45回量子情報技術研究会(QIT45)

実行条件

Qiskit によるノイズ下でのシミュレーション (ref. here)

- ▶ 各量子ビットの各基底ゲートのゲートエラー率
- ▶ 各量子ビットの各基底ゲートのゲート長
- 各量子ビットの T₁, T₂ 緩和時間定数
- ▶ 各量子ビットにおける読み出しエラー率

IBM Quantum による実験

- Shots 数 = 8192
- ▶ 測定エラー逓減 [3]
- backend: ibm_kawasaki[4]
- ▶ ∇f の出力ビット列が反転するように IQFT を変更¹

	depth	size	# of CNOT
Exp.1	39	75	17
Exp.2	48	165	36
Exp.3	45	232	73

Table: トランスパイル後の量子回路

¹ゲート数を減らすため SWAP 操作を取り除いたものをここでは IQFT と呼んでいる

閾値 100 shots とする。

第45回量子情報技術研究会(QIT45)

実行結果

まとめと今後

まとめ

- 1. Jordan の勾配推定量子アルゴリズムの紹介
- 2. 新しい手法を用いた勾配推定量子アルゴリズムの提案
- 3. シミュレーションと実験による検証

今後

- 1. 数と関数のエンコード方法
- 2. オラクルの効率的な構成
- 3. より弱い仮定での量子計算を実機で行う

Back up

固定小数点数による数の定義

整数のみを考える。

*n*ビットの2進数表示

$$\begin{array}{rcl} x & = & x_1 x_2 \dots x_n \\ & = & \sum_{j=1}^n x_j 2^{n-j} \\ x & \in & \{0, 1, \dots, 2^n - 1\}, \ x_j \in \{0, 1\} \end{array}$$

nビットの2の補数表示

$$\begin{aligned} x &= x_1 x_2 \dots x_n \\ &= -x_1 2^{n-1} + \sum_{j=2}^n x_j 2^{n-j} \\ x &\in \{-2^{n-1}, -2^{n-1} + 1, \dots, 2^{n-1} - 1\}, \ x_j \in \{0, 1\} \end{aligned}$$

位相オラクルの構成方法

位相オラクル
$$O_f \ket{x} = \exp\left(2\pi i \cdot Sf(x)\right) \ket{x}$$

(S:スケール因子) 関数が多項式で整数 × が n ビットの 2 進数表示されているとする

$$O_f \equiv \prod_{j=0} O_{f_j}$$

バイナリオラクルによる位相オラクルの構成

バイナリオラクル $O_f |\mathbf{x}\rangle |\mathbf{0}\rangle = |\mathbf{x}\rangle |f(\mathbf{x})\rangle$ 位相オラクルを得るには、 $f(\mathbf{x})$ の各ビットに以下のように位相 ゲートを施せば良い。

$$O_f^{-1}\prod_j P_j\left(2\pi\frac{S}{2^j}\right)O_f|\boldsymbol{x}\rangle|\boldsymbol{0}\rangle = \exp\left(2\pi i \cdot Sf(\boldsymbol{x})\right)|\boldsymbol{x}\rangle|\boldsymbol{0}\rangle$$

P_j:*f*(*x*)の*j*番目の量子ビットに作用する位相ゲート
 S: スケール因子
 バイナリオラクル 2 回のクエリで構築できる

х0₀ - <mark>U₂ - Р</mark> - Н α ×01 - U2 - P α x0₂ - U₂ - P 2(=3/0 P (=3(2) x03 - U2 - P x04 - P x05 - P---- $\overline{\alpha}$ x06 - P (X x07 - U3 - P a e 🚢

(a) Exp.1

(b) Exp.2

Figure: トランスパイル前の量子回路

第45回量子情報技術研究会(QIT45)

(c) Exp.3

Figure: トランスパイル前の量子回路

第45回量子情報技術研究会(QIT45)

Lemma

fが整数係数多項式で整数変数を持つので Taylor 展開時の多項式の係数は整数であり、また $\mathbf{x'_0} = \mathbf{0} \mod 2^m$ とすると、

$$f(\mathbf{x}_{0}' + 2^{m}\delta)$$

= $f(\mathbf{x}_{0} + (\mathbf{x}_{0}' - \mathbf{x}_{0}) + 2^{m}\delta)$
= $f(\mathbf{x}_{0}) + (\mathbf{x}_{0}' - \mathbf{x}_{0} + 2^{m}\delta) \cdot \nabla f|_{\mathbf{x}=\mathbf{x}_{0}} + 2^{2m}p(\delta, \mathbf{x}_{0}' - \mathbf{x}_{0})$
= (independent of δ) + $2^{m}\delta \cdot \nabla f|_{\mathbf{x}=\mathbf{x}_{0}} + 2^{2m}p(\delta, \mathbf{x}_{0}' - \mathbf{x}_{0})$

with
$$p(\delta, \mathbf{x}_0 - \mathbf{x}_0)$$
:
 $\delta, \mathbf{x}'_0 - \mathbf{x}_0$ に関して二次以上で整数値をとる多項式
 $\therefore f(\mathbf{x}'_0 + 2^m \delta) \equiv (\text{independent of } \delta) + 2^m \delta \cdot \nabla f|_{\mathbf{x} = \mathbf{x}_0} \pmod{2^{2m}}$
第一項は大域的位相として無視される。

実行結果のハミング距離による解析

Figure: 理想的出力ビット列に対するハミング距離の分布

	Noisy simulation	Raw result	Mitigated Result
実験1	0.240	0.450	0.373
実験 2	0.533	0.586	0.499
実験3	0.802	1.437	—-

Table: 平均ハミング距離

[1] Stephen P. Jordan.

Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 95:050501, Jul 2005.

[2] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum optimization algorithms via faster quantum gradient computation.

In <u>Proceedings of the Thirtieth Annual ACM-SIAM Symposium</u> on Discrete Algorithms, pages 1425–1444. SIAM, 2019.

 [3] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta.
 Mitigating measurement errors in multiqubit experiments. Phys. Rev. A, 103:042605, Apr 2021.

[4] Ibm quantum, 2021.