修士学位論文

ATLAS実験における超対称性の発見に関する研究

東京大学 大学院 理学系研究科 物理学専攻 小林研究室

佐々木 貴之

2005年1月30日

概要

現在ジュネーブ郊外にある欧州原子核研究機構 (CERN) において,大型陽子陽子衝突型加速器 (LHC) が 2007 年運転開始を目指して建設中である.LHC は重心系衝突エネルギーが 14TeV という世界最高のエネルギーをもつ加速器であり,ヒッグス粒子や超対称性粒子の探索,電弱対称性の実験的な解明などを通じて,新たな物理現象を発見することが期待されている.LHC で行なわれる実験の一つに ATLAS 実験がある.

素粒子物理学の大きな目標である力の統一を実現する理論の候補として、超対称性 (SUSY) 理 論がある. SUSY 粒子の質量は数 TeV 程度であると予想されており、LHC では超対称性粒子の 発見が期待されている. しかし、LHC はエネルギーと luminosity が極めて高い pp コライダー であり background の量が多いと考えられるため、いかに background を抑えるかが重要である. Background の評価は、物理現象を Monte Carlo シミュレーションで生成し、その後に検出 器のシミュレーションを実行することによって行われる. いままでの background の評価では、 Monte Carlo シミュレーションにおいて Parton Shower(PS) という手法で jet を生成していた が、PS は高い横方向運動量 (P_T) で良い近似ではなく、過小評価である. 本論文では、高い P_T で 良い近似である Matrix Element(ME)を用いて background の評価を行い、background の量が PS での評価に比べて数倍になることを明らかにした.

また, event selection を最適化した結果, ATLAS 検出器は $10fb^{-1}$ で約 2TeV のスケールの SUSY まで発見可能であるという結果が得られた.

目 次

第1章	序論 2
1.1	LHC
1.2	ATLAS の目指す物理
	1.2.1 SUSY 44
	1.2.2 SUSY 粒子の崩壊
	1.2.3 SUSY の発見モード 10
1.3	SUSY の発見に用いられる物理量11
	1.3.1 Missing E_T
	1.3.2 Hard jet と jet 数
	1.3.3 Transverse sphericity
	1.3.4 Effective mass $\ldots \ldots $
1.4	LEP による SUSY 探索の結果 15
第2章	ATLAS 検出器 18
2.1	Inner detector
2.2	Calorimeter
	2.2.1 EM calorimeter
	2.2.2 Hadron calorimeter
2.3	Muon spectrometer
	2.3.1 Muon Detector の性能
2.4	マグネットシステム
2.5	Altas \mathcal{O} Missing E_T resolution
筆3音	Detector simulation $\not\vdash$ Object reconstruction 28
3 1	Full simulation 28
5.1	3 1 1 Event filter 28
	$3.1.2$ Calibration $\not\vdash$ correction 20
	3.1.3 Cluster $\mathcal{O} \neq \vec{n} \succ$ iet reconstruction 20
	3.1.4 Lepton reconstruction 33
	3.1.5 Missing E_T reconstruction
3.2	Fast simulation
5.2	3.2.1 Jet reconstruction 36
	3.2.2 Electron muon photon reconstruction 37
	3.2.3 Missing E_T reconstruction
笹⊿音	SUSY Signal と Background の生成 30
⊿ = = 4 1	SUSY signal
4.1 4.2	Background 20
I.	BaouBroand

4.3	Generator	40
4.4	$PS \succeq ME \ldots \ldots$	40
	4.4.1 Matrix Element	41
	4.4.2 Partion Shower	41
	4.4.3 PSとMEの比較	41
4.5	Event generation	43
	4.5.1 Double count problem	44
	4.5.2 MLM method	44
第5章	Missing E_T	47
5.1	Full simulation による missing E_T の調査	48
5.2	Missing E_T resolution	48
	5.2.1 Topolodgy dependence	50
5.3	Fast simulation $\land o$ feed back	50
第6章	Background の評価	56
6.1	Event selection と発見モード	56
6.2	Selection の最適化	57
6.3	SUSY 発見能力	60
6.4	系統誤差の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
	6.4.1 MLM method の不定性	62
	6.4.2 Cross section の不定性	64
	6.4.3 発見能力の系統誤差	64
第7章	まとめ	66
付録A	Parton Distribution Function	67
付録B	${ m QCD}$ 4jets sample ${\cal O}$ double-Gaussian fiting	70
付録C	Generated Background	73

1.1	LHC 加速器
1.2	CMS
1.3	Alice
1.4	LHC-B
1.5	GUT Scale での力の統一
1.6	SUSY running math
1.7	Contour showing \tilde{g} , \tilde{q} mass for A=0, $tan\beta = 10$
1.8	SUSY 粒子の生成
1.9	SUSY \mathcal{O} cross section
1.10	SUSY 粒子の崩壊
1.11	$\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ の崩壊
1.12	平均 lepton(e, μ) 数
1.13	平均 bjet 数
1.14	ATLAS の SUSY 発見能力 12
1.15	CMS の SUSY 発見能力 13
1.16	Missing E_T 分布 (SUSY signal と background)
1.17	Leading P_T 分布 (SUSY signal と background)
1.18	Jet 数分布 (SUSY signal と background) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 15$
1.19	Transverse Sphericity 分布 (SUSY signal と background) $\dots \dots 15$
1.20	Effective mass と SUSY 粒子の崩壊 16
1.21	Effective mass のピークと Msusy 16
1.22	LEP による exclude
2.1	ATLAS 測定器
2.2	Innder detector の構造
2.3	EM calorimeter
2.4	タイル calorimeter
2.5	タイル calorimeter の構造 22
2.6	Calorimeter の構造
2.7	Muon spectrometer
2.8	Muon spectrometer(R-Z 断面図)
2.9	Sagitta の測定
2.10	マグネットの構造
2.11	η と磁場積分強度の関係
2.12	X-Y 平面の磁束の構造 (z=10.5m) 26
2.13	Missing $E_X(E_Y) \mathcal{O}$ resolution
2.14	Dead material

2.15	Fraction of energy deposited in the calorimeter	7
2.16	Electron σ reconstructed energy と incident enegy σ 比	7
2.17	Deadmaterial による energy loss	7
२ 1	Event filter の流れ図 20)
3.2	Cellのenergyの分割 30))
0.2 3 3	Sliding window 30	,)
3.4	JetTowerNoiseTool 31	í
3.5	JetConeFinderTool 32)
3.6	SplitMergeTool 32)
3.7	Jet \mathcal{O} merge	ł
3.8	Jet \mathcal{O} split	۲
3.9	Fake electron 35	ś
3 10	Fake muon 35	ś
0.10		,
4.1	Event の生成	L
4.2	$ME \not \in PS \qquad $	L
4.3	ME \mathcal{E} PS \mathcal{O} jet \mathcal{O} P_T 分布	2
4.4	$t\bar{t}$ +jet $\boldsymbol{\sigma}$ Feynman diagram	2
4.5	P_T distribution of leading jet $\ldots \ldots \ldots$	3
4.6	P_T distribution of 4th jet $\ldots \ldots \ldots$	3
4.7	Missing E_T distribution	3
4.8	Effective Mass distribution	Ł
4.9	Normalized Effective Mass distribution	Ł
4.10	Virtuality	Ł
4.11	Double-count の例 45	ý
4.12	$Z \to \nu\nu, P_T > 50 GeV, \eta < 5 \mathcal{O} \text{ jet } \mathbf{a} \dots \dots$	j
4.13	Leading jet \mathcal{O} P_T 分布	j
4.14	Leading jet $\mathcal{O}\eta$ 分布	j
4.15	4th jet の P_T 分布	j
4.16	4th jet の η 分布	j
۲ 1	Front diaplay of OCD di ict	7
0.1 5 0	Event display of QCD di-jet \ldots \ldots \ldots \ldots \ldots \ldots 47	5
0.Z	Fake missing E_T distribution in QCD multijet))
0.0 E 4	Fake missing E_X distribution \mathcal{O} fit $\ldots \ldots 49$, ,
0.4 E E	Fake missing E_X distribution O int(logscale)	, ,
0.0 E C	Component of missing L_T resolution	, ,
5.0 5.7	$\Sigma + 3/6$ jets $O + N \Box > \dots \dots$))
0.1 E 0	$\Sigma + 5/0$ jets O transverse sphericity)
5.8 5.0	Fake missing E_X distribution in $\Sigma + 3/6$ jets sample	-
5.9 5.10	Fake missing E_X distribution in QOD 2/4 jets sample	
0.1U	$Fake D_T \mathbf{VI} = \mathcal{I}_{\mathbf{V}} \dots $	5)
0.11 5 10	$\Delta \varphi(jei_1, missingL_T) \dots \dots$; >
0.12 E 19	Simulated take missing E_X)
0.13	real missing vs take missing)

$5.14 \\ 5.15 \\ 5.16$	Fake misssing E_X distributon in All η sample	54 54 54
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \end{array}$	Lepton fake and efficiency	58 58 59 60 60 60 60 61
$\begin{array}{c} 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \\ 6.16 \\ 6.17 \\ 6.18 \end{array}$	Required $P_{T,2,3,4}$ for 1 lepton mode	
A.1 A.2 A.3 A.4 A.5	PDF と cross section	67 68 68 69 69
B.1 B.2	QCD 4jets sample の double-Gaussian fitting 1. 図中の p1 が narrow compo- nents の値 (GeV), p2 が broad components の値 (GeV) である QCD 4jets sample の double-Gaussian fitting 2. 図中の p1 が narrow compo- nents の値 (GeV), p2 が broad components の値 (GeV) である	70 71
B.3	QCD 4jets sample \mathcal{O} double-Gaussian fitting 3. 図中の p1 が narrow components \mathcal{O} 値 (GeV), p2 が broad components \mathcal{O} 値 (GeV) である.	72

1.1	LHC 加速器の主なパラメーター	2
1.2	SM 粒子と SUSY 粒子	6
3.1	Hadron calorimeter leacage cut	34
3.2	Shower shape cut	34
4.1	SUSY signalのサンプルのパラメータ	39
4.2	主な SUSY 粒子の質量 : : : : : : : : : : : : : : : :	39
4.3	SUSY $\mathcal{O} \pm \mathfrak{a}$ process \mathcal{O} cross section	39
4.4	主な background process と generated event 数	40
6.1	Lepton efficiency	57
6.2	Lepton fake ratio(light flavour 起源)	57
6.3	Lepton fake ratio(heavy flavour 起源)	59
6.4	Scan variable	59
6.5	Optimized selection	52
6.6	Matching uncertainty	34
C.1	Di-jet sample	73
C.2	Background generator cut	74
C.3	Genarated background	75
C.4	QCD background generator cut	75
C.5	Genarated QCD background	76

第1章 序論

ジュネーブ郊外にある欧州原子核研究機構 (CERN) において、大型陽子陽子衝突型加速器 (LHC)が2007年運転開始を目指して現在建設中である.LHC は重心系衝突エネルギーが14TeV という世界最高のエネルギーをもつ加速器である.超対称性 (SUSY) 粒子の質量は数 TeV 以下 であると言わており、LHC で発見可能であると予想されている.

第1章では、LHC 加速器の性能と大型汎用検出器 ATLAS(A Troidal LHC ApparatuS)で超対 称性がどのように観測されるかについて述べる。第2章では、Technical Design Report(TDR)[1] に基づき、ATLAS 検出器について述べる。第3章では、detector simulation と jet や lepton がど のように reconstrution されるかを述べる。第4章では、本研究の background の評価に使用した SUSY signal と background サンプルの生成について述べる。第5章では、detector simulation を用いた調査の結果、missing E_T について理解されたことを述べる。第6章では、background についての評価と、event selection の最適化について述べる。最後に、第7章で全体をまとめる。

1.1 LHC

LHC(Large Hadron Collider) は 2007 年実験開始を目指して、スイスとフランスの国境にあ る CERN (欧州原子核研究機構)にて地下 100m に建設中の周長約 27km の大型陽子陽子衝突 型加速器である.図 1.1 に LHC の全体図を示す.ハドロンコライダーであるためシンクロトロ ン放射によるエネルギー損失が少なく、重心系 14TeV の高エネルギー領域の実験が可能である. 陽子ビームは 1.1×10^{11} 個ずつバンチ化され、バンチ・クロッシング・レートは 40.08MHz で、 high luminosity 時には 1 回のバンチクロッシングあたり平均 23 回の陽子陽子衝突が予想され る. low luminosity 時には, high luminosity 時の 1/10 の平均 2.3 回の衝突が予想される. LHC の主なパラメータを表 1.1 に示す.

LHC には 4 つのビーム衝突点がありそれぞれに,後述する ATLAS, ATLAS より小型の汎用検 出器である CMS(the Compact Muon Solenoid 図 1.2), 重イオン衝突実験用検出器の ALICE

主リング周長	$26.66\mathrm{km}$	重心系エネルギー (陽子+陽子)	$7.0 \mathrm{TeV} + 7.0 \mathrm{TeV}$
low luminosity	$10^{33} {\rm cm}^{-2} {\rm sec}^{-1}$	high luminosity	$10^{34} {\rm cm}^{-2} {\rm sec}^{-1}$
luminosity 寿命	10 時間	入射エネルギー	$450 \mathrm{GeV}$
衝突頻度	$40.08\mathrm{MHz}$	バンチ間隔	24.95nsec
1 バンチあたりの陽子数	10 ¹¹ 個	バンチの長さ	$75\mathrm{mm}$
バンチ数	2835 個	バンチ衝突当たりの陽子衝突	23
衝突点のビーム半径	$16\mu{ m m}$	衝突角度	$200\mu \mathrm{rad}$

表 1.1: LHC 加速器の主なパラメーター

図 1.1: LHC 加速器

(A Large Ion Collider Experiment 図 1.3), B-Physics に特化した検出器 LHC-B(図 1.4) が設置 される.

1.2 ATLASの目指す物理

ATLAS 実験の主要な目的は超対称性粒子と Higgs 粒子の発見である. ここでは, 超対称性 (SUSY) について説明する.

1.2.1 SUSY

自然には様々な対称性がある. その 1 つである超対称性 (SUSY) は fermion と boson の対称性であり, fermion と boson が対になって存在する機構である. 例えば, quark や lepton の スーパーパートナーとして, squark(\tilde{q}) や slepton(\tilde{l}) があり, gluon のスーパーパートナーとして, squark(\tilde{q}) や slepton(\tilde{l}) があり, gluon のスーパーパートナーとして, squark(\tilde{q}) や slepton(\tilde{l}) があり, gluon のスーパーパートナーとし

SUSY 探索の motivation

数 TeV の領域に SUSY の存在が期待される理由として、以下が上げられる.

- Hierarchy problem GUT Scale(10¹⁶GeV) と Electro Weak(EW) Scale(10²GeV) の2つのスケールが存在す る問題の解決.
- Fine tuning radiative correction で Higgs の質量が発散してしまう問題の解決.
- 3. 力の統一 SUSY が存在すると、GUT Scale で力が統一することができる.(図 1.5)
- 4. ダークマターの候補

SUSY の一番軽い粒子 (lightest susy particles, LSP) はダークマターの候補.

Hierachy problem とは、GUT Scale(10^{16} GeV) から EW Scale(10^{2} GeV) を自然に作れるかと いう問題である. SUSY 粒子の存在するスケールが数 TeV 付近であり、SUSY から EW Scale が 作られているとすると、 10^{3} GeV から 10^{2} GeV を作ることになり、10%程度の調整で EW Scale を作ることができる。Hierachy ploblem をうまく解決しても 2. の fine tuning の問題がある。 SUSY ではスーパーパートナーを入れることによって質量の発散を打ち消すことができるため、 二乗の発散が SUSY 粒子の存在するスケールから log の発散に変わる。もし SUSY 粒子の存在 するスケールが大きすぎると二乗の発散の効果が大きくなり、fine tuning の問題が解決しない。 以上より、SUSY 粒子の質量は数 TeV 以下であると予想されており、LHC での発見が期待され ている。また、図 1.5 のように数 TeV 付近に SUSY があれば、GUT Scale で U1、SU2、SU3 の カップリング定数が一致し力が統一することも、SUSY が数 TeV にあるという予想の根拠であ る。さらに、SUSY 理論の利点として LSP がよいダークマターの候補であることが挙げられる.

SUSY のモデル

SUSY の有力なモデルとして、LSP が neutral gaugino である super gravity モデルと、LSP が gravitino である Gauge-mediation モデルがある. ここでは、super gravity モデルの一つで ある minimal super gravity(mSUGRA) について説明する. もし SUSY が完全に対称なら、SM 粒子と SUSY 粒子は等しい質量を持つはずであるが、実験で標準理論の粒子と等しい質量を持つ SUSY 粒子は発見されていない. よって、SUSY の対称性は破れており、SUSY 粒子はその破 れの影響を受けて重くなっている. Super gravity モデルは、その破れと我々の世界が重力を介して繋がっているというモデルである. SUSY の破れのエネルギースケールが高くても重力の

図 1.5: GUT Scale での力の統一

結合は小さいので, GUT scale での SUSY 粒子の質量のオーダー (SUSY Scale) は以下の式の 程度である.

$$SUSY \, scale = \frac{(SUSY \, \mathcal{O} \, \mathrm{i} \mathfrak{g} n \mathcal{O} \, \mathcal{A} \, \mathcal{F} - \mathcal{I} \mathcal{V})^2}{Planck \, scale(10^{19} \, GeV)} \tag{1.1}$$

Planck scale は、重力の結合が、強い相互作用の結合、弱い相互作用の結合、電磁相互作用の結合 と同じになるスケールである. SUSY scale が 10^3 GeV 程度であると考えられるので、破れのス ケールは 10^{11} GeV 程度であると考えられる.

 $mSUGRA \ lt R \ rll Pretare relation of the set of$

$$R = (-1)^{3B - L + 2S} \tag{1.2}$$

で与えられる. R パリティーの保存の意味は,バーテックスにおいて SUSY 粒子の数は偶数で あるということである. つまり, SUSY の粒子は対で生成され, SUSY 粒子が崩壊したときには, 崩壊先に必ず SUSY 粒子が含まれるということである.

mSUGRA の粒子を表 1.2 に示す. neutral gaugino $(\tilde{W^0}, \tilde{B})$ と neutral higgsino $(\tilde{H_1^0}, \tilde{H_2^0})$ は混 合して, neutralino $(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0)$ となる. $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ は gaugino like でり, $\tilde{\chi}_3^0, \tilde{\chi}_4^0$ は higssino like で ある. 一番軽い $\tilde{\chi}_1^0$ が mSUGRA の LSP となる.

SUSY では Higgs の doublet は最低 2 つ必要である.よって、自由度は 2(doublet2 個) × 2(doublet の上下) × 2(複素数)=8 となり、 Z, W^{\pm} で 3 個の自由度が使われるので、Higgs の数 は 5 個である.一番軽い Higgs である h は標準理論の Higgs と同じ特徴を持っている.また、h 以外の Higgs は縮退していて、ほぼ同じ質量を持っている.

一般的な SUSY のモデルは 124 個ものパラメータを持つが, mSUGRA では幾つかの仮定を 入れてパラーメータの数を 5 個に減らしている. mSUGRA のパラメータは, 以下の 5 個である.

Standard Model 粒子 (SM 粒子)			SUSY 粒子
spin	粒子名	spin	粒子名
1/2	$quark(u_R, d_R, c_R, s_R, t_R, b_R,$	0	scalar quark $(\tilde{u}_R, \tilde{d}_R, \tilde{c}_R, \tilde{s}_R, \tilde{t}_R, \tilde{b}_R,$
	$u_L, d_L, c_L, s_L, t_L, b_L)$		$ ilde{u}_L, ilde{d}_L, ilde{c}_L, ilde{s}_L, ilde{t}_L, ilde{b}_L)$
1/2	$lepton(e_R, \mu_R, \tau_R, e_L, \mu_L, \tau_L)$	0	scalar leptonon $(\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R, \tilde{e}_L, \tilde{\mu}_L, \tilde{\tau}_L)$
1/2	neutrino $(\nu_{eL}, \nu_{\mu L}, \nu_{\tau L})$	0	scalar neutrino $(\tilde{\nu}_{eL}, \tilde{\nu}_{\mu L}, \tilde{\nu}_{\tau L})$
0	$\operatorname{Higgs}(h, H, A, H^{\pm})$	1/2	$\mathrm{higgsino}(ilde{H}^0_1, ilde{H}^0_2, ilde{H}^\pm)$
1	$\operatorname{photon}(\gamma)$	1/2	$\operatorname{bino}(\tilde{B}^0)$
1	weak boson (W^{\pm}, Z)	1/2	$\operatorname{wino}(ilde{W}^{\pm}, ilde{W}^{0})$
1	$\operatorname{gluon}(g)$	1/2	$\operatorname{gluino}(ilde{g})$
2	$\operatorname{graviton}(G)$	3/2	$\operatorname{gravitino}(ilde{G})$

表 1.2: SM 粒子と SUSY 粒子

- m₀:GUT scale でのスカラー粒子 (scalar quark, scalar leptonon, scalar neutrino)の質量 図 1.6 に示されるように、mSUGRA では GUT Scale でスカラー粒子の質量は同じである という仮定を課している. m_0 は \tilde{q} , \tilde{l} の質量に敏感である. LHC では \tilde{g} と \tilde{q} の生成がメイ ンであるので、 \tilde{q} の質量に敏感である m_0 は非常に重要なパラメータである.
- $m_{1/2}$:GUT scale でのゲージ粒子 $(\tilde{q}, \tilde{W}^{\pm}, \tilde{W}^{0}, \tilde{B}^{0})$ の質量 スカラー粒子と同じように、GUT Scale でゲージ粒子の質量は同じである. $m_{1/2}$ は $\tilde{g}, \tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ の質量に敏感なパラメータであり、 \tilde{g} は大量に生成されるため、重要なパラメー タである.
- A:trilinear coupling GUT scale での, Higgs と sfermion の結合強さ. SUSY 粒子は q が 6 種類, l が 3 種類ある ので、A は 9 種類あるはずであるが、mSUGRA ではそれらを共通の値と仮定し A として いる.
- μ :Higgsino mass Higgsino の質量は2つの Higgs ポテンシャルを \tilde{H}_1, \tilde{H}_2 として, $\mu \tilde{H}_1 \tilde{H}_2$ で与えられる.
- *B*:Higgs mixing term ラグラジアンの Higgs 混合項 $(B\mu H_1H_2)$ のパラメータ.

自発的に対称性を破るという条件と EW scale を再現するという条件を課すと、B, µの代わり に 2 つの Higgs ポテンシャルが極小値をとるエネルギー (真空期待値)の比である $tan\beta$ と μ の 符号をパラメータとして用いることができる.

mSUGRA において、100GeV のスケールでの主な SUSY 粒子の質量は下の式で与えられる. M_z^2 をZの質量, $D = M_z^2 cos 2\beta$ として,

$$m^2(\tilde{g}) = (2.8m_{1/2})^2 \tag{1.3}$$

$$m^{2}(\tilde{u}_{L}) = m_{0}^{2} + 6.28m_{1/2}^{2} + 0.35D$$
(1.4)

$$m^{2}(\tilde{u}_{R}) = m_{0}^{2} + 5.87m_{1/2}^{2} + 0.16D$$
(1.5)

 $m^{2}(\tilde{u}_{R}) = m_{0}^{2} + 5.87m_{1/2}^{2} + 0.16D$ $m^{2}(\tilde{d}_{L}) = m_{0}^{2} + 6.28m_{1/2}^{2} - 0.42D$ (1.6)

$$m^2(\tilde{d}_R) = m_0^2 + 5.82m_{1/2}^2 - 0.08D \tag{1.7}$$

☑ 1.6: SUSY running math

$$m^2(\tilde{e}_L) = m_0^2 + 0.52m_{1/2}^2 - 0.27D$$
(1.8)

$$m^{2}(\tilde{e}_{R}) = m_{0}^{2} + 0.15m_{1/2}^{2} - 0.23D$$
(1.9)

$$m^2(\tilde{\nu}_L) = m_0^2 + 0.52m_{1/2}^2 + 0.50D \tag{1.10}$$

(1.11)

 \tilde{q} の第2項が大きいのは、SU(3)の強い相互作用をするためである.また、左巻き粒子の第2項 が右巻きに比べ大きいのは、SU(2)に対する電荷を持っているためである.

第3世代の SUSY 粒子は、湯川結合と Higgs を通した左右の混合 (LR mixing) の効果で、第1、 第2世代の粒子よりも軽くなる。 \tilde{t} は top の湯川カップリングが大きいために常に軽いが、 $\tilde{b}, \tilde{\tau}$ は tan β によって質量が変わり、 $tan\beta$ が大きいほど軽くなる。

Gauginoの質量については、図 1.6 に示されるように GUT scale では $m_{1/2}$ であるが, running により 1TeV 付近では、

$$m(B): m(W): m(\tilde{g}) = 0.4m_{1/2}: 0.8m_{1/2}: 2.8m_{1/2}$$
(1.12)

という関係になり、 $m_{1/2}$ のみで決まる. \tilde{g} はカラーを持った粒子の radiative correction を受けるので $2.8m_{1/2}$ と重くなっている. \tilde{B} よりも \tilde{W} が重いのは、SU(2)の効果を受けるかどうかの 違いから来ている.

図 1.7 は $\tilde{q} \geq \tilde{g}$ の mass contour である. \tilde{q} は楕円の形を, \tilde{g} は $m_{1/2}$ に平行な直線の形である ことが分かる. SUSY 粒子の生成については次節で述べるが,基本的に軽い粒子ができるため, $m_0-m_{1/2}$ 平面の左上の領域では \tilde{q} が多く生成され,右下の領域では \tilde{g} が多く生成される.

 \boxtimes 1.7: Contour showing \tilde{g} , \tilde{q} mass for A=0, $tan\beta = 10$

SUSY 粒子の生成

図 1.8: SUSY 粒子の生成

LHC は陽子陽子衝突型加速器であるため、図 1.8 のように, $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{q}$ の生成が主である. 生成断面積は \tilde{g} や \tilde{q} の質量によって決まり,大まかな生成断面積は

- $m(\tilde{g}) = m(\tilde{q}) = 500 GeV : \sigma \sim 100 pb$
- $m(\tilde{g}) = m(\tilde{q}) = 1TeV : \sigma \sim 3pb$
- $m(\tilde{g}) = m(\tilde{q}) = 1.5 TeV : \sigma \sim 100 fb$

程度である. LHC の積分 luminosity は low luminisity 時では 1 年間で $10fb^{-1}$ であるため, 1 TeV の SUSY が存在するとすると, 1 年間で約 30000 回もの SUSY のイベントが起こる.

図 1.9 は SUSY の $m_0 - m_{1/2}$ 平面の cross section である. \tilde{g}/\tilde{q} pair production が上で説明した $\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$ の生成チャンネルである. $\tilde{g}/\tilde{q}-\tilde{\chi}$ associate production は, \tilde{g} または \tilde{q} と, gaugino($\tilde{\chi}^{\pm}, \tilde{\chi}^0$) が生成するチャンネルであるが, バーテックスが α_s から α に変わるため, \tilde{g}/\tilde{q} pair production

 \boxtimes 1.9: SUSY \mathcal{O} cross section

に比べ cross section が小さい. しかし, \tilde{g} よりも $\tilde{\chi}^0$, $\tilde{\chi}^\pm$ の方が軽いため, $m_{1/2}$ が大きなところ では有効なチャンネルである.

1.2.2 SUSY 粒子の崩壊

図 1.10: SUSY 粒子の崩壊

生成された \tilde{g} や \tilde{q} は、図 1.10 のように次々と崩壊を繰り返し、数本の jet を出す. mode にもよるが、lepton を放出するときもある. mSUGRA では R パリティーは保存するため、LSP の $\tilde{\chi}_1^{\tilde{q}}$ は安定な粒子であり、この粒子は ν と同じく検出器にかからないので、missing E_T が生じる. χ^{\pm}, χ^0 の崩壊はパラメータによって大きく異なる. 主な崩壊を図 1.11 に示す.

• I の領域では, $m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0) > m(\tilde{l})$ となり, $\tilde{\chi}_2^0$ が \tilde{l} を通して $\tilde{\chi}_2^0 \rightarrow \tilde{l}l \rightarrow \tilde{\chi}_1^0 l l$ のよう に 2 段階で崩壊する. そのため lepton が多く出るのがこの領域の特徴である. 図 1.12 は

図 1.11: $\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ の崩壊

 $tan\beta = 10, \mu > 0, A = 0$ のときの, 平均の isolated lepton(e, μ)の数である. leptonの定 義は $P_T > 10 GeV, |\eta| < 2.5$ とし, efficiency は 100%を仮定した. I の領域では, 他の領域 よりも lepton 数が非常に多いことが分かる.

- II の領域では、 $m(\tilde{\chi}_2^0) m(\tilde{\chi}_1^0) > m(h)$ となり、 $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h$ のように Higgs が大量に生成 される。Higgs は殆ど $h \rightarrow bb$ の崩壊する。この 2 つの b quark 起源の jet(bjet) を組めば Higgs の mass を reconstruct できる。また、分岐比は小さいが $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 Z$ の崩壊モードも 存在するため、 $Z \rightarrow ll$ のピークが観測される。
- III の領域では, $m(h) > m(\tilde{\chi}_2^0) m(\tilde{\chi}_1^0) > m(Z)$ となり, $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$ のように Z が大量 に生成される. $h \to bb$ がのピークが無く, $Z \to ll$ のピークがあれば, この領域であ ると推測できる. Standard model では ZZZ というカップリングは無いが, $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ には higgsino 成分が混じっているために, $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$ という崩壊をすることができる.
- IV の領域では, $m(Z) > m(\tilde{\chi}_2^0) m(\tilde{\chi}_1^0)$ であり, $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 f f$ の 3 体崩壊をする.

多段崩壊と $\tilde{\chi}_1^0$ が作る missing E_T のために, SUSY の基本的なトポロジは, multijet + missing E_T + (leptons) である.

図 1.13 は 1 イベントあたりの平均 bjet 数 ($P_T > 30 GeV$, $|\eta| < 2$) である.efficiency は 60%を 仮定している.中央にピークが見えるのは, \tilde{t}, \tilde{b} が \tilde{g} よりも軽くなるために, $\tilde{g} \rightarrow \tilde{b}b, \tilde{g} \rightarrow \tilde{t}t$ の 崩壊をするためである.

1.2.3 SUSYの発見モード

SUSY の基本的な発見モードは,

0 lepton mode
 Isolated lepton を要求しないモード. 分岐比が大きいが、その分 background も大きい.

図 1.12: 平均 lepton(e, μ) 数

図 1.13: 平均 bjet 数

• 1 lepton mode

Isolated lepton (e, μ) を 1 個要求するモード. 分岐比は小さいが, 予想される background も小さい.

の二つがある.本論文では、この二つの発見モードについて、backgroundの評価を行う.

図 1.14 は ATLAS の発見能力 [3] である. 4 個の絵は, $tan\beta$ が 10, 30, 50, 55 での発見能力を示している. 0l の線が 0 lepton mode, 1l の線が 1 lepton mode での発見能力を示し、この線より $m_{1/2}$ が小さい領域で、SUSY が発見可能である.本論文では扱わないが, E_Tmiss の線は missing E_T のみを要求する mode の発見能力, 2l OS は反対の電荷を持った 2 個の lepton の mode の発見能力, 3l は lepton が 3 個の mode の発見能力を示している.

 m_0 の小さいところで、1 lepton mode の発見能力が高くなっているのは、図 1.11 の I の領域 であり、 $\chi_2^0 \rightarrow \tilde{l}l \rightarrow ll\chi_1^0$ となり、lepton が 2 個放出される。2 leptons ではあるが、jet が近く にあり isolated lepton が nonisoleted lepton とされてしまった場合は、1 letpton mode に入る ため、この領域では 1 lepton mode の発見能力が広くなっている。

図 1.15 は CMS の SUSY の発見能力であり、ATLAS とほぼ同じである。CMS の発見能力に おいて 0 lepton mode が載っていないのは、0 lepton mode は background の量が多く、その量 は missing E_T の resolution に大きく依存するため、信頼性のある結果が出せないとしているか らである。Missing E_T については、1.3.1 と第5章で詳しく述べる。

1.3 SUSY の発見に用いられる物理量

ここでは、SUSY の基本的な event selection に用いられる物理量について説明する. 図 1.16 ~ 1.19 で用いた SUSY signal は、 $\tilde{g} \geq \tilde{q}$ の質量が約 1TeV のサンプルである.

1.3.1 Missing E_T

1.2.2 で述べたように、大きな missing E_T は SUSY の特徴的な信号である. Background である、Z や W からの neutrino も missing E_T を作るが、SUSY の LSP は崩壊によってブーストされるためと、LSP 自身の質量が比較的重いため、background よりも大きな missing E_T が観測される. 図 1.16 は、積算 luminosity が $10fb^{-1}$ のときの missing E_T の分布を示している、斜線部分は background の missing E_T 分布を示し、黒線は SUSY シグナルの missing E_T の分布

図 1.14: ATLAS の SUSY 発見能力

を示している. $600 \text{GeV} \sim 700 \text{GeV}$ 以上の領域では、明らかに SUSY の missing E_T の方が大き いことがわかる.

Missing E_T は calorimeter のエネルギーのアンバランスから測定される. ATLAS における

m_{1/2} (GeV)

図 1.15: CMS の SUSY 発見能力

Missing E_T の測定方法は, 第5章で詳しく述べる.

1.3.2 Hard jetとjet数

図 1.17 は leading jet の P_T 分布である. $\tilde{q} \Leftrightarrow \tilde{g}$ から $\tilde{\chi}_2^0 \Leftrightarrow \tilde{\chi}_1^\pm$ への崩壊は, 質量の差が大きい ため P_T の大きな jet が放出される.

図 1.18 は SUSY と QCD background のジェット数の分布 ($P_T > 30$ GeV, $|\eta| < 2$) である. QCD background は 2 体の quark の散乱であり,pp collider である ATLAS では,最も cross section が大きい background である. SUSY 粒子は崩壊を繰り返すため, QCD background よりも jet 数が多くなっている. QCD background は hard scatter で作られた jet の P_T が 280 ~ 560 GeV

図 1.16: Missing E_T 分布 (SUSY signal と background)

のサンプルを用いた.

図 1.17: Leading P_T 分布 (SUSY signal と background)

1.3.3 Transverse sphericity

Transverse phericity(S_T)は, jet の $P_X \ge P_Y$ から作られるテンソル S の固有値 λ_1, λ_2 から, 以下の式で計算される.

$$S = \begin{vmatrix} \sum P_X^2 & \sum P_X P_Y \\ \sum P_X P_Y & \sum P_Y^2 \end{vmatrix}$$
(1.13)

$$S_T = \frac{2\lambda_2}{\lambda_1 + \lambda_2} \tag{1.14}$$

Transverse phericity は, jet の分布が直線に近いほど 0 に近くなり, 円に近いほど 1 に近い値 をとる. SUSY のパラメータにも依るが, 基本的に $\tilde{q} \Leftrightarrow \tilde{g}$ の質量は大きいため, $\tilde{q} \Leftrightarrow \tilde{g}$ はあまり ブーストされていない. この状態から, 多段崩壊を繰り返して jet を出すので, jet の P_T 分布は 円に近い形となる. 一方, QCD の background は 2 \rightarrow 2 の散乱であるので直線の形である. よっ て, 図 1.19 のように, QCD background の transverse sphericity は 0 に近く, SUSY は QCD よ りも 1 に近い.

図 1.18: Jet 数分布 (SUSY signal と background)

図 1.19: Transverse Sphericity 分布 (SUSY signal と background)

1.3.4 Effective mass

Effective mass は式 1.15 で定義され, P_T の大きい方から 4 本の jet の $|P_T|$ と missing E_T を足 した値である. \tilde{q} の典型的な質量として \tilde{u}_R の質量を用いて, $\tilde{g} \ge u_R$ の軽い方の粒子の質量を

$$M_{SUSY} = Min(m(\tilde{g}), m(\tilde{u}_R))$$
(1.16)

とする. 図 1.20 に示すように、 M_{SUSY} が大きくなればなるほど、SUSY の多段崩壊で生じた jet の P_T の和と missing E_T の和は大きくなる.よって、effective mass は jet の $|P_T|$ 足した値であるので、図 1.21 に示されるように M_{SUSY} に比例する. $\tilde{g} \ge \tilde{u}_R$ の軽い方の粒子の質量を用いているのは、 $\tilde{g} \ge \tilde{q}$ の軽い方の粒子が多く生成されるためである.

1.4 LEP による SUSY 探索の結果

ここでは LEP(Large Electron Positron Collider) による SUSY 探索の結果について述べる. LEP は、電子・陽電子衝突装置であり、1989 年~2000 年の間稼動していた。1996 年までの LEP

図 1.20: Effective mass と SUSY 粒子の崩壊

図 1.21: Effective mass のピークと Msusy

I では重心系衝突エネルギーが約 90GeV であったが, 1996 年からの LEP II では重心系衝突エ ネルギーが約 200GeV に増強された.

図 1.22 は, $tan\beta = 10, A = 0, \mu > 0$ における $m_0 \cdot m_{1/2}$ 平面の exclude された領域を示して いる. 黄色の領域は, 真空期待値が負にならず, EW symmetry breaking が起こらないため, 理 論的に禁止される領域である. $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ または, $Z \to \tilde{\nu}\tilde{\nu}$ の崩壊モードが存在すると, Z の invisible 粒子への崩壊幅が変化する. 水色の領域は, Z の invisible 粒子への崩壊幅の測定によっ て exclude された. 緑色の領域は, $\tilde{\chi}^{\pm}$ の探索によって exclude された. 赤色の領域は, \tilde{l} の探索 によって exclude された. 青色の領域は, $\tilde{\chi}_2^0$ の崩壊によって生成される Higgs の探索によって exclude された.

図 1.22: LEP による exclude

第2章 ATLAS 検出器

ATLAS 検出器は、直径 22m、長さ 44m の円筒形で、総重量は 7,000t という巨大な汎用検出 器である。その全体図を図 2.1 に示す。検出器は内側から inner detector, calorimeter, muon spectrometer から構成され、検出器の間にはマグネット・システムが設置されている。LHC の 高い luminosity においても、photon、electron、muon、jet、missing E_T などの信号を高速かつ正 確に処理できるように、以下の要求を満たすように設計されている。

- EM calorimeter による高精度の electron と photon の測定と, hadron calorimeter による 高精度な jet と missing E_T の測定
- muon spectrometer による高精度の muon の運動量測定
- 飛跡検出による highP_T lepton 運動量の測定, photon の識別, 完全なイベント再構成

大きな擬ラピディティ(η)*と完全な方位角のカバー

^{*} η は pseudo rapidity と呼ばれ, ビーム軸と粒子のなす角を θ とすると

 $[\]eta = -\ln(\tan(\theta/2))$ で定義される.

高頻度でやってくる electron, photon, muon, jet などを確実に処理

• 耐放射線性

円筒型の ATLAS 検出器は, バレルと呼ばれる円筒の筒に相当する ($|\eta| < 1$) 領域と, エンド キャップと呼ばれる円筒の円に相当する部分 ($1 < |\eta|$)の2つの領域に分けられる. さらにエン ドキャップは, 円筒の円の中心 (ビーム)付近より外側 ($1 < |\eta| < 1.9$)の領域をエンドキャップ, 円の中心付近 ($|\eta| > 1.9$)をフォワードと分けて呼ぶこともある.

ATLAS における軸の定義は図 2.1 にあるように、beam の軸を Z 軸とし、LHC のリングの中 央を向く方向を X 軸の方向、X 軸と Z 軸に直行する軸を Y 軸としている. ϕ は X-Y 平面上にお ける X 軸からの角度であり、左回りを正の方向とする.

以下に検出器とマグネットについて簡単に説明する.

2.1 Inner detector

inner detector はビームの衝突点に最も近い場所に設置され、2Tの磁場をつくる超伝導ソレ ノイドの内部に位置する. 図 2.2 に inner detector の構造を示す. inner detector は内部から順 に、ピクセル検出器 (Pixel)、シリコン・トラッカー (SCT)、遷移輻射トラッカー (TRT) の 3 つで 構成されている.

ピクセル検出器は、最内層にある半導体検出器で、高い位置分解能を持つ、一つ一つのピクセルは 50µm×300µmの小さいシリコン検出器である. ビームの衝突点から一番近い位置にある検出器のため、高い granularity を持ち、その分解能は測定間隔を D として、

$$\sigma = \frac{D}{\sqrt{12}} \tag{2.1}$$

で与えられる.

SCT は、ストリップピッチが 80µm、縦横 6~7cm のシリコンウエハーが円筒状のタイルに敷き詰められ、それが 2 層互いに 40mrad 傾けることで位置の検出を可能にしている.

TRT は、小径 $4m\phi$ のストロー検出器を 36 層積層することによって構成されている. 分解能 は $200\mu m$ で Pixel や SCT よりも悪いが、TRT は層が多いため連続的な飛跡測定ができ、トラッ クの reconstruct をすることができる.

Inner detector は、荷電粒子のトラックの reconstruction と P_T の測定を行うが、 $|\eta| < 2.5$ の 領域しかカバーしていない. そのため、inner detector の情報が必要な、electron、muon、bjet の identification(ID) は $|\eta| < 2.5$ しかできない.

2.2 Calorimeter

Calorimeter の主な役割は, electron や γ 線, jet などのエネルギー, 角度の測定である. ATLAS 実験に使用される 4 種類の calorimeter は, EM calorimeter と hadron calorimeter の 2 つのカ テゴリーに分けられ, 広い $|\eta|$ 領域をカバーする. 図 2.6 にその構造を示し, 以下に各 calorimeter について簡単に説明する.

図 2.2: Innder detector の構造

2.2.1 EM calorimeter

EM calorimeter は、アコーディオン構造の鉛の吸収体と液体アルゴンからなり、放射線耐性 に優れている. セントラル・ソレノイド・マグネットの内側に設置されバレル/エンドキャップ 領域をカバーし(図 2.6 の黄色部分), electron と photon の測定に用いられる. 物質量は EM シャワーのエネルギーをすべて吸収するために十分な $20X_0$ [†] 程度である. そのエネルギー分 解能は、E を electron の energy として、

$$\frac{\Delta\sigma_E}{E} = \frac{9.5\%}{\sqrt{E}} \oplus 0.7\% \tag{2.2}$$

で表される. 第1項は electron の数 N をエネルギー E に換算するときの統計的な揺らぎに よるサンプリング項,第2項は calibration 精度や温度の揺らぎによる定数項である. 例えば, E = 100 GeVの時には約1%の分解能で測定可能である.

図 2.3 は EM calorimeter の構造であり、 EM calorimeter は 3 層から成っている. 1 層目は η 方向に細かく区切られている. これは solenoid magnet の前で始まったシャワーは磁場によっ $\tau \phi$ 方向に smear されてしまうため、 ϕ 方向を細かくしても意味が無いからである.

2.2.2 Hadron calorimeter

バレル部は鉄の吸収体とタイル状のシンチレータからなるタイル calorimeter が用いられる.(図 2.4) タイル calorimeter は図 2.5 のように 3 層構造をしている.

放射線強度がより高いエンドキャップ部(赤部分)は、銅の吸収体と液体アルゴンからなる calorimeter が用いられる.更に、放射線強度の高いフォワード部(緑部分)は銅とタングステ

 $^{^{\}dagger}X_0$ は放射長 (Radiation length) であり, electron が物質中を通り抜けるときに, EM 相互作用によりエネル ギーが 1/e に減る距離が 1 X_0 である.

☑ 2.3: EM calorimeter

図 2.4: タイル calorimeter

図 2.5: タイル calorimeter の構造

ンの吸収体と液体アルゴンからなる calorimeter が用いられる. これらは EM calorimeter の外 側に設置され、ハドロンの同定、エネルギー測定、 jet の再構成などを行う. 物質量はバレル部で 11λ 、エンドキャップ部で 14λ [‡] 以上ある.

エネルギー分解能は,

$$\frac{\Delta\sigma_E}{E} = \frac{52.3\%}{\sqrt{E}} \oplus 1.7\% \cdots Barrel$$
(2.3)

$$\frac{\Delta\sigma_E}{E} = \frac{62.4\%}{\sqrt{E}} \oplus 3.6\% \cdots Endcap \tag{2.4}$$

で表され, 第1項はサンプリング項, 第2項は定数項である. 例えば, E=100GeV のときは, 約5%程度の分解能である.

2.3 Muon spectrometer

Muonは物質の透過力が高いために、ATLAS検出器の外側でも他の検出器に影響されることなく検出することが出来る。Muon spectrometerは、運動量精密測定用のMDT(Muon Drift Tube)、 CSC(Cathorde Strip Chamber)と、トリガ用の RPC(Resictive Plate Chamber)、TGC(Thin Gap Chamber)の4種類の検出器で構成され、ATLAS検出器の一番外側に設置される検出器である。Muon spectrometerの全体図を図2.7に示す。図のようにMDT はバレル部とエンド キャップ部の両方に設置される。CSC は、フォワードの内側に設置される。RPC はバレル部を、 TGC はエンドキャップをカバーする。

図 2.8 の R-Z 断面図にあるように、それぞれの検出器は 3 層に重ねられて設置される. 超伝導 空芯トロイダル磁石がバレル部 (図中の赤線の四角)、エンドキャップ部 (図の下側中央の青線

 $^{{}^{\}ddagger}\lambda$ は衝突長 (interaction length) であり, 強い相互作用をする粒子が原子核に衝突するまでの平均自由行程である.

図 2.6: Calorimeter の構造

の四角)に検出器に内包されるように置かれ、それぞれにφ方向の磁場を作っている. このφ方 向の磁場によって R-Z 平面内で曲げられた muon の曲率を、3 層の検出器で測定してその運動 量を測定する.

⊠ 2.7: Muon spectrometer

2.3.1 Muon Detectorの性能

Muon は弱い相互作用で崩壊するために比較的長寿命であり, muon の崩壊長は約 650m に もなる. さらに, muon は calorimeter を minimum ionizing particle(MIP) で通過するため, calorimeter の外側でトラックを引くことができる. Muon の P_T の測定は MDT の sagitta(図 2.9 中の s) を利用して行われ, その分解能は以下の式で表すことができる.

$$P_T[GeV/c] = 0.3B\rho[T \cdot m] \tag{2.5}$$

図 2.8: Muon spectrometer(R-Z 断面図)

$$\frac{L}{2\rho} = \sin\frac{\theta}{2} \sim \frac{\theta}{2} \tag{2.6}$$

$$\Delta P_T = P_T \sin\theta \sim 0.3LB \tag{2.7}$$

$$s = \rho(1 - \cos\frac{2}{\theta}) \sim \rho\frac{\theta^2}{8} = \frac{0.3}{8}\frac{L^2B}{P_T} = X_2 - \frac{X_1 + X_3}{2}$$
(2.8)

ho:曲率半径 [m]

B:磁場[T]

L:測定間隔[m]

上式より sagitta は P_T の逆数に比例することが分かる. 従って,

$$\Delta(\frac{1}{P_T}) = \frac{8}{0.3 \cdot BL^2} \sqrt{\frac{3}{2}} \sigma(X)$$
(2.9)

$$\frac{\sigma_{P_T}}{P_T} = \sqrt{\frac{3}{2}}\sigma(X)\frac{8P_T}{0.3BL^2}$$
(2.10)

となる.より一般的に、測定位置箇所が N(≥3) で多重散乱を考慮した式は

$$\frac{\sigma_{P_T}}{P_T} = \sqrt{\frac{3}{2}}\sigma(X)\frac{P_T}{0.3BL^2}\sqrt{\frac{720(N-1)^3}{(N-2)N(N+1)(N+2)}} + 0.045\frac{1}{B\sqrt{LX_0}}$$
(2.11)

と表される. 第 2 項が多重散乱による項で、P に依存しない. MDT は、N=3、L=6[m]、 $\sigma(x) = 60[\mu m]$ 、であり、 P_T =100[GeV]、BL=4[Tm] とすると、 $\frac{\sigma_{P_t}}{P_T} = 0.0082 = 0.82\%$ の分解能が得られる.

2.4 マグネットシステム

ATLAS のマグネットは, 中央のソレノイド磁石, バレル部, エンドキャップ部それぞれのトロ イダル磁石の3つからなり, いずれも超伝導磁石である.マグネットの構造を図2.10 に示す.両 トロイダル磁石は, 8 つのコイルがビーム軸に対して8回対称になるように配置されており, 積 分磁場強度はバレル部で2~6Tm, エンドキャップ部で4~8Tm である. ラピディティηの値に

図 2.9: Sagitta の測定

対するトロイダル磁場の積分強度を図 2.11 に示す.トロイダル磁場は ϕ 方向成分が主だが, 磁場の不均一性は避けられないため, R 方向成分も存在する (図 2.12).

図 2.10: マグネットの構造

2.5 Altas \mathcal{O} Missing E_T resolution

粒子の 4-vector を生成する generator の情報と, 検出器で reconstruct された $\sum P_X$ の差を Δ とする.

$$\Delta = \sum P_X(P_Y)_{generator} - \sum P_X(P_Y)_{reconstruct}$$
(2.12)

missing E_T の resolution の X, Y 軸成分 ($\sigma(P_{X,Y}^{miss})$) は, Δ の分布を Gaussian で fitting したと きの標準偏差として定義する.

従来考えられていた resolution は,

$$\sigma(P_{X,Y}^{miss}) = 0.46 \times \sqrt{\sum E_T}$$
(2.13)

で表される. 図 2.13 は $A \rightarrow \tau \tau$ のシミュレーション結果であり,式 2.13 の 0.46 という値はこの シミュレーションの結果により得られたものである.

 \boxtimes 2.13: Missing $E_X(E_Y) \mathcal{O}$ resolution

ALTAS には dead material が多い crack 領域があり、この領域に jet が飛ぶと calorimetor に jet が届くまでにエネルギーの一部を損失してしまう。そのため、この領域では enery resolution が悪くなると予想されている。図 2.14 は dead material の η dependence である。1.4 < $|\eta|$ < 1.6 にはケーブルや cryostat などのサービスがあり、dead material の量が多くなっていることが分 かる.

図 2.15 は jet が各 calorimeter に落とす energy の割合である. EM calorimeter については, $|\eta| = 1.5 \ge |\eta| = 3.2$ 付近で calorimeter が切り替わっており, hadron calorimeter については, $|\eta| = 1.2 \ge |\eta| = 3.2$ である.

図 2.16 は energy が 30GeV の electron の, reconstructed energy/30GeV である. $1.4 < |\eta| < 1.6$ では, incident energy に対して reconstruct された energy が, 非常に小さくなっていること が分かる. これは, dead material の量の多さに加え, $1.4 < |\eta| < 1.6$ は, EM calorimeter の barrel と endcap が重なる領域であるのが原因である.

図 2.17 は jet の energy に対する損失した energy の割合であり, 白い四角は 50 GeV の jet で

図 2.16: Electron \mathcal{O} reconstructed energy \succeq incident energy \mathcal{O} 比

図 2.17: Deadmaterial による energy loss

あり黒い四角は 200GeV の jet, 丸は 2TeV の jet の結果である. energy の損失が多い領域は 2 箇所あり、 $1.4 < |\eta| < 1.6 \ge 2.8 < |\eta| < 3.5$ である. $1.4 < |\eta| < 1.6$ の領域で損失が大きいのは barrel と endcap の境目であるためであり、 $2.8 < |\eta| < 3.5$ の領域で損失が大きいのは endcap と forward の境目であるためである.

このように、ATLAS では calorimeter の energy resolution が悪い領域があり、図 2.13 で示される resolution がこのような領域では当てはまらない. この問題については第5章で述べる.

第3章 Detector simulationとObject reconstruction

ここでは、検出器のシミュレーションと object reconstruction について、ATLAS の解析フレー ムワークである Athena 10.0.4 のアルゴリズムに基づき説明する. 検出器のシミュレーション には、geant4[5] を用いて検出器のジオメトリや物質密度などを正確に再現した full simulation と、generator の情報を full simulation に合うように smearing する fast simulation(Atlfast) が ある.

3.1 Full simulation

Full simulation の行程は4つに分けられる.

- Event generation
 Pythia[6] や Alpgen[7] などの generator を用いて、粒子の 4-vector を生成する. event filter
 もこの段階でかけられる.
- 2. Geant4 simulation

Generator の生成した粒子が、検出器にどれだけの energy を落とすかを計算する. $\gamma \rightarrow e^+e^-$ の conversion もこの段階でシミュレーションされる.

3. Digitization

Geant4 simulation で計算した検出器に落とした energy から,検出器がどれくらいの出力 を出すかシミュレーションする.

4. Reconstruction

検出器の情報をもとに, jet, electron などの object を reconstruct する. Missing E_T の計 算もここで行われる.

3.1.1 Event filter

Full simulation は geant4 を利用してシミュレーションを行うために, fast simulation に比べ て膨大な計算量が必要である。そこで, 必要とされるイベントだけを取り出す event filter が必 要になる。従来の event filter では generator の情報を元にした単純なフィルターしかかけるこ とができなかったが, 本研究では Full simulation を行うにあたり, Atlfast の結果を用いたより 高度なフィルターを開発した。図 3.1 は開発した event filter の流れを示している。

生成されたイベントの情報はまず Atlfast に渡され, fast simulation による jet や electron な どの reconstruction が行われ, バンクに保存される. event filter はこのバンクを読み出し, jet や electron などの閾値を設定し, event generator で生成されたイベントをフィルターする. フィ ルターを通過したイベントは file に記録され, geant4 simulation で利用される.

図 3.1: Event filter の流れ図

3.1.2 Calibration \succeq correction

ここでは、e/h による calibration と cryostat による energy の減少の補正について説明する.

H1 style caliblation

Hadron が calorimeter に入射したときは、hadron の energy の一部が原子核を壊すことに使わ れるため、electron や photon が入射した時よりも出力が小さくなる. 同じエネルギーの electron と hadron が入射した時の、calorimeter の出力の比が e/h である. H1 style caliblation は cell の energy の calibration であり、 e/h の補正を行う. 補正の式は、 w を補正の factor、 a_0 、 a_1 、 a_2 をパ ラメータとして、

$$w = a_0 + a_1 \times exp(-a_3 E_0/V) \tag{3.1}$$

で与えられる. E_0 は cell の energy, V は cell の体積である. EM シャワーと hadron シャワー を比較すると, EM シャワーの方が hadron シャワーよりも小さな範囲に energy を落とすため energy density が大きい. よって, energy density(E_0/V)が大きいときは EM like であるので, w が 1 に近くなるようにパラメータを設定する. 一方, E_0/V が小さいときは hadron like であ るとして, w を 1 よりも大きくし, e/h の補正を行う.

Cryostat の補正

Cryostat で損失した energy(E_{cryo}) は以下の式で補正する.

$$E_{cryo} = w \times \sqrt{E_T^{EM3} \times E_T^{Tile1}}$$
(3.2)

 E_T^{EM3} は EM calorimeter の 3 層目の E_T であり、 E_T^{Tile1} は hadron calorimeter の 1 層目の E_T である. Cryostat は EM calorimeter と hadron calorimeter の間にあり、cryostat で損失した energy は E_T^{EM3} と E_T^{Tile1} の energy に比例するために、上の式で補正を行っている. w はパラ メータであり、シミュレーションから cryostat で損失した energy に合うように決定している.

3.1.3 Cluster の生成とjet reconstruction

Full simulation における jet の reconstruction は、まず longtudial 方向に calorimeter の energy を足した tower と呼ばれる object をつくり、それを元に cluster の生成と jet の reconstruct を 行う.
η - ϕ 平面 (η : 5 ~ 5, ϕ : $-\pi$ ~ π)を 50 × 64 の領域に区切り, ($\Delta \eta \times \Delta \phi$) = (0.1 × 0.1)の領 域を作る. 区切られた領域を segment と定義する. 各 segment において longtudinal 方向に EM calorimeter と hadron calorimeter の energy を足し tower とする. このとき calorimeter の-つの cell が複数の segment にまたがるときは, cell の energy を segment の数で分割する. 例え ば, 図 3.2 のように一つの cell に 4 つの segment があるとき, cell の energy を 1/4 として, tower を作る.

図 3.2: Cell の energy の分割

Cluster の生成

Cluster は以下に示される Sliding Window Algorithm によって作られる.

☑ 3.3: Sliding window

- 1. Tower を作るときに分割した η - ϕ 平面で 5 × 5 segment の window をつくり cluster の候補 を作る.
 - η 方向に window を ±1segment ずらしたときに (図 3.3 の赤), window 内の E_T が減 少する.かつ, φ 方向に ±1segment ずらしたとき (図 3.3 の緑) も window 内の E_T が 減少する位置を cluster の候補の位置とし, window 内の tower をまとめた object を cluster の候補とする.

• Window 内の E_T が 15 GeV 以上

の条件を課す.

- 2. 最後に, cluster の候補の間の $\Delta\eta$, $\Delta\phi$ が共に 2 segments より大きいことを要求する. こ の条件を満たせなかった場合は, 以下の方法で cluster の候補を間引く.
 - 2 つの cluster の transverse energy の比が 0.9 より小さいときは、大きい transverse energy を持つ cluster を採用する.
 - 2 つの cluster の transverse energy の比が 0.9 よりも大きいときは、中心のタワーの transverse energy が大きい cluster を採用する.

Cluster の中心は、 3×3 segment(図 3.3 o青) の E_T の重心としている.

Jet reconstruction

⊠ 3.4: JetTowerNoiseTool

Jet 生成のアルゴリズムは主に 2 つあり, seed から半径 R*内の cell を基に jet を作る cone algorithm(R=0.7, R=0.4) と, soft と collinear な cluster を merge して jet を作る KT algorithm がある. ここでは cone algorism について説明する. cone algorithm は以下のパッケージが順番 に実行されることによって行われる.

- JetTowerNoiseTool(図 3.4) は negative energy の tower を隣の tower と merge すること によって消すツールである。energy が正になるまで 7 × 7 の範囲にある tower を足す. そ れでも energy が正にならない場合はその tower を seed から外す。negative energy の原 因は、ノイズやパイルアップ、隣のチャンネルの干渉である。
- 2. JetSignalSelectorTool/InitialEtCut は jet の reconstruct の前に seed に cut をかけるツー ルである. デフォルトでは cut は要求しない.

 $^{^{*}}R=\sqrt{\Delta\eta^{2}+\Delta\phi^{2}}$

⊠ 3.5: JetConeFinderTool

⊠ 3.6: SplitMergeTool

- 3. JetConeFinderTool/ConeFinder(図 3.5) は cone algorithm の中心となるツールであり, jet の seed から半径 R の cone 内にある energy を計算する. Reconstruct された jet の candidate の方向と seed の位置は, $\Delta \eta < 0.05, \Delta \phi < 0.05$ であることを要求している. こ の条件に合わない場合は, seed の位置を cone 内の energy の和と定義し直し, seed の中心 から cone 内の energy を計算し, η, ϕ が 0.05 以内であることを要求する. これを条件が合 うまで繰り返す. また, jet の candidate は, 互いに $\Delta \eta > 0.05, \Delta \phi > 0.05$ 離れていること を要求している.
- JetSplitMergeTool/SplitMerge(図 3.6) は jet の candidate が重なっているときに、重なった部分を split したり、merge したりするツールである.図 3.7 のように、重なった部分の energy が片方の jet の energy の半分以上であれば、2 つの jet を merge して 1 つの jet と する.そうでない場合は、図 3.8 のように重なった部分の segment を距離の近い jet のほうに加え、重なった部分を split する.
- JetCellCalibratorTool/CellCalibratorはCellのcalibrationをするツールである. 3.1.2 で 述べた e/h の補正と cryostat の補正を行う. またこれらの補正を行った後に、η, φ に応じ て energy をスケールし collection を行う.
- 6. JetSignalSelectorTool/FinalEtCut は最後に jet の candidate を絞り込むツールであり, $E_T > 10 GeV$ を要求している.

3.1.4 Lepton reconstruction

ここでは、electron と muon の reconstruction と、その fake について説明する.

Electron reconstruction

3.1.3 で述べた cluster は、EM calorimeter と hadron calorimeter の両方を用いるが、EM calorimeter のみを用い、7 × 7cell から成る cluster を EM cluster と定義する. Electron の reconstruct は、EM cluster に対して以下の cut をかけることによって行われる.

表 3.1: Hadron calorimeter leacage cut

$ \eta $	threshold
0~0.8	$3.5(0.01046 - 0.0121 \eta + 0.002\eta^2)$
$0.8 \sim 1.5$	0.008
$1.5 \sim 1.8$	0.03
$1.8 \sim 2.0$	0.02
$2.0 \thicksim 2.47$	0.015

表 3.2: Shower shape cut

$ \eta $	${\rm threshold}$
0~0.8	0.915
$0.8 \sim 1.5$	0.91
$1.5 \sim 1.8$	0.89
$1.8 \sim 2.0$	0.92
$2.0 \thicksim 2.47$	0.91

- Hadron calorimeter への漏れが無い.
 Electron は殆どの energy を EM calorimeter に落とすため、hadron calorimeter への energy の漏れが無いことを要求する. EM calorimeter の 2 層目の 3 × 7cell の E_T を E_T^{EM2}, hadron calorimeter の 1 層目の E_T を E_T^{H1} として、E_T^{H1}/E_T^{EM1} が表 3.1 にある閾値以下 であることを要求する.
- Shower の shape が細い
 Electron の shower はハドロンの shower に比べて細いため, shower の shape が細いこと
 を要求する. Shower の shape は EM calorimeter の 2 層目の η × φ=3 × 7cell と 7 × 7cell
 の E_T 比とし,表 3.2 の値を超えないことを要求する.
- トラックとのマッチング

トラックが EM cluster の近くにあり、さらに E/P が 1 に近いことを要求する. Default では、E/P が 0.7 ~ 4 を要求している. これは π^{\pm} と区別するためである. π^{\pm} は EM calorimeter に energy の一部しか落とさないため、E/P は 1 よりも小さくなる.

• Isolation

Jet と区別するために, electron の周りに energy の deposit が無いことを要求する. b/c の semi-leptonic decay から出た electron と π^0 のダリツ崩壊 ($\pi^0 \rightarrow e^-e^+\gamma$) による electron は周りに hadron からの energy があるために, isolation を要求することで区別することが できる.

図 3.9 のように、Electron の fake は photon が pair production で e^-e^+ を作り、その片方が soft だった場合と、 $\pi^{\pm} \geq \pi^0$ からの photon がたまたま同じ方向に飛び、E/P が 1 に近かった場合である。ATLAS 検出器の calorimeter はセグメンテーションが細かいため、 $\pi^{\pm} \geq \pi^0$ からの photon を区別できるので、後者はほとんど fake にならない. Jet を electron としてしまう割合 はおおよそ 10^{-4} のオーダーである.

🗷 3.9: Fake electron

Muon reconstruction

Muonの質量は約 100MeV であり electron よりも 200 倍も重い. Photon の制動放射は $1/m^4$ に 比例するため, muon は calorimeter を Minimum Ionizing Particle(MIP) で通過し, calorimeter の外側にある muon system でトラックを観測することができる. Muon reconstruction は muon spectrometer と inner detector のトラックのマッチングによって行われる. よって, muon は isolation を要求しなくても, reconstruction が行えるが, b/c の semi-leptonic decay から出た muon と区別するためには, isolation の要求が必要である.

図 3.10 のように muon の fake としては π^{\pm} が calorimeter を素通りしてしまう punch through や, π^{\pm} が calorimeter の前で崩壊して muon を出す decay in flight がある. Jet を muon として しまう割合はおおよそ 10^{-4} のオーダーである.

🗷 3.10: Fake muon

3.1.5 Missing E_T reconstruction

Full simulation \mathcal{O} missing E_T の計算方法は cell base である. Missing $E_T \mathcal{E} \mathcal{E}_T$, missing E_X $\mathcal{E} \mathcal{E}_X$, missing $E_Y \mathcal{E} \mathcal{E}_Y \mathcal{E} \mathcal{U} \mathcal{T}$, missing E_T は,

$$\mathbb{E}_{X,Y} = -\left(\sum E_{X,Y}^{cell} + \sum E_{X,Y}^{cryostat} + \sum E_{X,Y}^{muon}\right)$$
(3.3)

で計算される.

右辺第 1 項はノイズの $\pm 2\sigma$ の閾値を超えた, cell の energy を足したものである. cell の energy は 3.1.2 で述べた H1 style calibration で補正する. 第 2 項は cryostat の補正である. Jet は calorimeter に到達する前に cryostat で energy を損失してしまうので, ここで補正を行う. 補 正の方法は jet を基に, 3.1.2 で述べた方法で energy を計算する. 第 3 項は muon の energy であ る. Muon は calorimeter を MIP として通過し, energy をほとんど落とさないので, cell とは別 に energy を足す必要がある.

3.2 Fast simulation

Fast simulation は Atlfast[9] によって行われる. シミュレーションの手順は full simulation よりも大幅に簡略化されており,

- 1. Event generation
- 2. Atlfast $[\cap LS \cap detector \cap O \cap smearing simulation$

の2段階で行われる. Atlfast は full simulation に合うように, reconstructed object を smearing するだけである. 精度の面では full simulation に劣るが, 速度の面では大幅に勝っている. LHC は high energy, high luminosity であるためイベントの量が極めて多い. そのため, シミュレーションのデータも大量に用意する必要があり, 速度の面で優れている fast simulation は重要である.

3.2.1 Jet reconstruction

Atlfast は generator の粒子の 4-vector をもとに, cell の energy を計算する. Cell を元に jet を reconstruct する.

Atlfast \mathcal{O} cell \mathbf{i} , $\eta - \phi$ 平面で,

- 0.1×0.1 for $|\eta| < 3$
- 0.2×0.2 for $3 < |\eta| < 5$

となっている. 1つの cell に入射した, neutrino, muon, SUSY LSP 以外の粒子 energy をその cell の energy とする.

Jet の reconstruction は以下のようになっている.

- 1. Cellの energy が 1.5GeV よりも大きいものを initiator とする.
- 2. Initiator の E_T の大きい cell から R=0.4 以内の cell を一つの cluster の候補とする. cluster に使われた cell は処理から外す.

- 3. Cluster の候補の中で, energy が 5GeV 以上のものを cluster とする.
- 4. $E_T > 10 \text{GeV}, |\eta| < 5 \mathcal{O}$ cluser を jet とする.

デフォルトの値では、energy が違うだけで、ほぼ cluster ~ jet の定義となっている。

Jet の flavour tagging は, generator の情報を見て, reconstruct された jet から R=0.2 の内側 に $P_T > 5$ GeV の b, c, または R=0.3 以内に $P_T > 10$ GeV 以上の tau がいるかどうかで行われ る. Tagging の範囲は $|\eta| < 2.5$ である.

Jet の energy smearing は jet の energy を基に一番最後に行われ, low luminosity のときは,

|η| < 3 の場合

$$\frac{\Delta E}{E} = \frac{0.50}{\sqrt{E}} \oplus 0.03$$

3 < |η| < 5 の場合

$$\frac{\Delta E}{E} = \frac{1.0}{\sqrt{E}} \oplus 0.07$$

で与えられている.

3.2.2 Electron, muon, photon reconstruction

Electron, muon, photon の reconstruction は generator の粒子情報をそのまま利用する. Electron:

- selection criteria $|\eta| < 2.5 GeV, P_T > 5 GeV$
- isolation criteria R=0.4内にある cellの energy が 10GeV 以下

Muon:

- selection criteria $P_T > 6 GeV$
- isolation criteria R=0.4内にある cellの energy が 10GeV 以下

Photon:

- selection criteria $|\eta| < 2.5, P_T > 5 GeV$
- isolation criteria R=0.4内にある cellの energy が 10GeV 以下

Enegy smearing は, low luminosity のときは,

|η| < 3 の場合

$$\frac{\Delta E_e}{E_e} = \frac{0.12}{\sqrt{E_e}} \oplus \frac{0.245}{\sqrt{E_e^T}} \oplus 0.07$$

3 < |η| < 5 の場合

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \frac{0.1}{\sqrt{E_{\gamma}}} \oplus \frac{0.245}{\sqrt{E_{\gamma}^T}} \oplus 0.037$$

で与えられる. pile-up と回路雑音をまとめて第2項としている.

3.2.3 Missing E_T reconstruction

Atlfast σ missing E_T の計算方法は full simulation とは違い, object base である.

$$\not\!\!E_{X,Y} = -\left(\sum E_{X,Y}^{jet} + \sum E_{X,Y}^{unused \ cell} + \sum E_{X,Y}^{e,\mu,\gamma}\right)$$
(3.5)

で計算される.

Jet, electron, photon, muon \mathcal{O} energy は smearing されているので, missing E_T も smearing されることになる.

4.1 SUSY signal

1.2.1 で述べたように、LHC では $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{q}$ の生成が主である.本論文では、SUSY signal の 例として、 $m(\tilde{g}) \sim m(\tilde{q}) \sim 1 TeV$ の signal を用いる. SUSY signal は Pythia 6.2 を用いて生成 した.

使用したパラメータは,

表 4.1: SUSY signal のサンプルのパラメータ					
パラメータ m_0 $m_{1/2}$ $tan\beta$ A μ					
値	400 GeV	$400 \mathrm{GeV}$	10	0	+

主な粒子の質量は、

表 4.2: 主な SUSY 粒子の質量

SUSY particle	$\tilde{u_R}$	${ ilde g}$	$ ilde{\chi_2^0}$	$\tilde{\chi_1^{\pm}}$	$ ilde{\chi_1^0}$	h_0
質量 [GeV]	881.3	965.3	315.3	315.0	162.6	114.8

表 4.3: SUSY の主な process の cross section

All included subprocesses	1.53 pb
$g + g \longrightarrow \tilde{g} + \tilde{g}$	0.079 pb
$q+q \rightarrow \tilde{q}+\tilde{q}$	0.353 pb
$q+g \rightarrow \tilde{q}+\tilde{g}$	0.628 pb

 $m(\tilde{g}) \sim m(\tilde{q}) \sim 1TeV$ の粒子を作るためには、Parton Distribution Function(PDF)(付録 A 参照)の粒子の持つエネルギーの割合が 0.2 くらいである必要がある. このような領域では、 gluon よりも valence quark のほうが存在確率が多いため、 $g + g \rightarrow \tilde{g} + \tilde{g}$ の cross section は 小さくなる.

4.2 Background

SUSY の基本的なトポロジは, multijet + missing E_T + (leptons) であるので, このようなト ポロジをもつ process が background になる. おもな background process を表 4.4 にまとめる. Missing E_T が要求されるので, neutrino が含まれる process が background になる. $Z \rightarrow \tau \tau$ と崩壊した場合でも, tau の崩壊により neutrino が生成されるので, background になる.

Generator で生成しているのは parton であるが,表 4.4 中では jet と書いた. Generator でかけた cut については付録の表 C.2,表 C.4 にまとめた.

Generated process	cross section	# generated event	L(fb)
$t\bar{t}$ +Njets (WW l l) N=0~3	$\sim 1 n b$	$1 imes 10^7$	90
$t\bar{t}$ +Njets (WW l qq) N=0~3	$\sim 1 n b$	2.5×10^7	60
W+Njets(W l) N=2 ~ 6	$\sim 10 nb$	$3 imes 10^7$	20
$Z+Njets(Z) > N=2 \sim 6$	$\sim 1 n b$	$2 imes 10^7$	40
Z+Njets (Z $~~)$ N=2 ~ 6	$\sim 1 n b$	1.5×10^7	70
QCD QQjj (Q=b,c) (4jets)	$\sim 10 nb$	$1 imes 10^8$	20
QCD mlutijets (4 jets)	$\sim \mu b$	$5 imes 10^7$	10

表 4.4: 主な background process と generated event 数

QCD backgournd は2種類に分類される.

- Real missing:QQJJ (Q=b,c) Real missingを含む QCD background は b や c の semi-leptonic decay によって生成され る neutrino を含むものである.
- Fake missing

Detector \mathcal{O} energy miss-measurement によって, fake missing E_T が生じる. QCD \mathcal{O} cross section は signal よりも 6 桁も大きいため, fake missing E_T のテールが background になる. Fake missing については, 第5章で詳しく述べる.

4.3 Generator

Background の生成は、図 4.1 のように、まず黒線で表される hard scatter と parton の Matrix Element を Alpgen で生成し、次いで赤線で表されるような collinear や soft な領域に Pythia を 用いて Parton Shower を追加した.

4.4 PSとME

ここでは、Parton Shower(PS) と Matrix Element(ME) について説明する. 図 4.2 のように、 スケールの大きな領域の数本の parton は ME で生成し、スケールの小さい領域は PS で parton を生成する. Factrization scale と PS scale は parton を発展させる方法を切り替える scale であ り、factrization scale から PS scale までの parton の発展は PS によって行われる. Factrization scale よりも小さい領域では計算が困難であるので、実験の結果を用いて PDF の中に繰り込ん でいる.

図 4.2: ME と PS

4.4.1 Matrix Element

Matrix Element(ME) による parton の生成は, Feynman diagram から cross section を計算 し、イベントを生成する手法である. 終状態の粒子の数が多くなると計算時間が増加するという 問題があるが, P_T が大きい領域では, Parton Shower よりも正確な予言ができる.

4.4.2 Partion Shower

Parton Shower(PS) は 1 個の parton が 2 個に分裂する確率を基に parton を生成する手法である. DGLAP の発展方程式を用いれば, parton が virtuality を上げていく過程で, 1 個の parton が 2 個に分裂する確率を計算することができる. Parton が分裂する確率と, 乱数を用いて jet を 生成するのが PS の手法である.

4.4.3 PSとMEの比較

PS は P_T の高い領域で良い近似ではなく、高い P_T の jet を出すことはできない、一方、ME は その領域で予言能力があり、 P_T の高い jet を出すことができる、しかし、ME は逆に collinear な

領域や soft な領域で発散してしまう. このような領域では PS が良い近似となる.

 \boxtimes 4.4: $t\bar{t}$ +jet \mathcal{O} Feynman diagram

図 4.3 は $t\bar{t}$ +jet(図 4.4) の additional jet の P_T 分布である. 赤線で表される PS の jet の P_T は 400GeV 以上は出ていないのに対し, 黒線で表される ME の jet の P_T は 900GeV まで出ていることが分かる. このことから, 従来の PS を用いた background の評価は過小評価であることが分かる.

Matrix Element と Parton Shower の詳細な比較を Z+jets の process を用いて行った. 用い たサンプルは

1. Maxrix Element(ME)

Alpgen で生成した Matrix Element のサンプル. 6jet 目までを ME で生成し, 7jet 目から は PS で生成している.

- Z+1jet + PS (Z1j+PS)
 Pythia で生成したサンプル. Z+1jet の部分は Matrix Element であるが,残りの jet は Parton Shower で生成している.
- 3. Drell-Yan + jets(DY1j+PS) Pythia の Drell-Yan(DY) のサンプル. フィルターをかけて、1jet が必ず存在するイベン

トを選んだ. Matrix Element で計算しているのは DY の部分だけであり, jet はすべて Parton Shower で生成している.

 \boxtimes 4.5: P_T distribution of leading jet

 \boxtimes 4.6: P_T distribution of 4th jet

 \boxtimes 4.7: Missing E_T distribution

図 4.5 は, leading jet の P_T である. ME のサンプルと Z1j+PS は leading jet を Matrix Element で計算しているので, P_T 分布の傾きが同じである. 図 4.6 は, 4 番目にハードな jet の P_T 分布 である. Matrix Element で計算されているのは ME のサンプルだけであり, 他の二つのサンプ ルに比べて高い P_T まで jet が出ている. 図 4.7 は, missing E_T の分布であり, cut の影響で小さ い領域の形は違うが, 高い領域で分布の傾きはほぼ一致している.

図 4.8, 図 4.9 は 1.3.4 で述べた Effective Mass の分布である. Effective Mass は jet の P_T の scalar sum と missing E_T を足したものであるため, 高い P_T を持つ jet を生成することのでき ない PS は ME に比べて, Effective Mass の傾きが大きい.

4.5 Event generation

本論文では、background \mathcal{O} generation に Alpgen(version 1.3) と Pythia(version 6.2) を使用 した.

まず、Alpgen で jet 数を指定し ME を生成し、次に Pythia で PS を追加した. 干渉の効果を入れるために Alpgen と Pythia のインターフェースで P_T ordering を行っている. P_T ordering を

☑ 4.8: Effective Mass distribution

☑ 4.9: Normalized Effective Mass distribution

行った領域は、図 4.10の灰色で示される領域である. Alpgenのカバーする領域は、 $P_T > 40 GeV$ 以上とし、jet とjet の ΔR が 0.7 離れるようにした. Pythia のカバーする領域は Alpgen がカバー していない領域であり、 $P_T < 40 GeV$ (soft) と ME で生成した jet から R が 0.7 以内 (collinear) である.

4.5.1 Double count problem

MEとPSを組み合わせてイベントを作るときは、イベントの double counting を取り除く必要がある. これは、PS が ME でカバーすべき領域の jet を生成してしまったときに生じる. 図 4.10 のように、parton は PS で gluon を放出しながら、parton の質量の二乗である virtuality を 上げる. しかし、ME では virtuality を 0 から計算するために、0 から Parton Shower scale までの間は ME と PS で同じ virtuality の領域をカバーすることになり、double counting が起こる.

☑ 4.10: Virtuality

4.5.2 MLM method

MLM method は PS が ME がカバーする領域の jet を生成したら veto する方式である.例 えば、 $Z \rightarrow \nu\nu$ +Njets サンプルでは、ME のカバーする領域は、 $E_T > 40 GeV$, jet と jet の ΔR が 0.7 以上であるので、PS jet が soft($E_T < 40 GeV$) もしくは collinear(ME parton と jet の $\Delta R < 0.7$) では無い jet が存在した場合、そのイベントを veto する (matching). 図 4.11 は ME で 4jet を生成しているが、ME で 5jets を生成するイベントと double-counting してしまっている例である. 青の部分は、ME parton と jet が一致している. 赤の部分は PS jet が collinear に放出されているが、collinear な領域は PS でカバーするべきなので、この jet は問 題ない. しかし、オレンジ色の部分は PS jet が高い P_T を持ち、1 本の jet が 2 本に分裂してし まっている. $E_T > 40 GeV$ の jet は ME でカバーするべきであるので、このイベントは 5jets の ME sample でカバーするべきである.

図 4.11: Double-count の例

図 4.12 は $Z \rightarrow \nu\nu$, $P_T > 50 GeV$, $|\eta| < 5$ の jet 数である. 図 4.13, 図 4.14 は leading jet の P_T 分布と η 分布であり, 図 4.15, 図 4.16 は 4 番目に P_T が大きい jet の P_T 分布と η 分布である. MLM method を用いて 2~6 jets の ME のサンプルを足し合わせた. Jet の数, P_T 分布, η 分布 共に滑らかに変化しており, matching が正しく行われていることがわかる.

図 4.12: $Z \rightarrow \nu\nu, P_T > 50 GeV, |\eta| < 5 \mathcal{O}$ jet 数

図 4.13: Leading jet $\mathcal{O} P_T$ 分布

図 4.15: 4th jet の P_T 分布

図 4.14: Leading jet $\boldsymbol{o} \eta$ 分布

第5章 Missing E_T

1.2.2 で述べたように、SUSY のイベントトポロジは multijets + missing E_T + (leptons) で あり、Missing E_T は重要な SUSY の信号である。しかし、検出器の resolution は完璧ではない ため、neutrino や neutralino が存在しないのに、missing E_T が検出されてしまう fake missig E_T の問題がある。図 5.1 は full simulation による QCD di-jet のイベントディスプレイである。

 \boxtimes 5.1: Event display of QCD di-jet

左の jet のエネルギーを大きく評価してしまったか、右の jet のエネルギーを小さく評価してし まったために、右の jet と同じ ϕ 方向に missing E_T が観測されている. このイベントに nutrino は含まれていないので、この観測された missing E_T は fake missing E_T である.

図 5.2 は, full simulation による QCD 4jets sample C(付録 C の表 C.4, 4jets sample c を参 照)の fake Missing E_T 分布である. 300 ~ 400 GeV 付近まで fake missing E_T が伸びているこ

 \boxtimes 5.2: Fake missing E_T distributon in QCD multijet

とが分かる. QCD jets の cross section は約 $10\mu b$ と, SUSY の cross section の $10^4 \sim 10^6$ 倍も 大きい. よって QCD の jets は missing E_T の resolution によっては非常に危険な background であり, fake missing のテールは慎重に取り扱う必要がある.

5.1 Full simulation による missing E_T の調査

ここでは, missing E_T の resolution と topology dependence について述べる.

5.2 Missing E_T resolution

Missing E_T fitting

ここでは missing E_T の resolution について述べる. Missing E_T は正の量 $(\sqrt{E_X^2 + E_Y^2})$ であ り, Gaussian 分布にならないため, missing E_T の X 軸成分である missing E_X を用いる. ここ で, fake missing E_X を以下のように定義する.

$$fake \not\!\!\!E_X = reconstructed \not\!\!\!\!E_X - True \not\!\!\!\!\!E_X \tag{5.1}$$

reconstructed \mathbb{P}_X は検出器シミュレーションの結果から求めた missing E_X であり, $True \mathbb{P}_X$ は Generator の情報から得た nutrino と neutralino の E_X の和である. 今回用いた full simulation(athena 10.0.4) には muon の取り扱いに問題が有るため, reconstructed \mathbb{P}_X を計算するとき の muon の E_T は, generator の値を使っている.

Jet には ElectroMagnetic(EM) 成分と Hadronic 成分が含まれている. EM 成分と Hadron 成分の分解能を比較すると、EM 成分の分解能の方が良い. また、Atlas の calorimeter は EM Calorimeter と Hadron Calorimeter それぞれ、Barrel と Endcap に分かれている. よって、resolution の異なった成分があるため、resolution は single-Gaussian ではなく、double-Gaussian に 近い形となる.

図 5.3 と図 5.4 は QCD 4jets サンプルの fake missing E_X 分布である. $\sum E_X = 1200 \sim 1300 \text{GeV}$ のイベントに対し, single-Gaussian fitting(黒線) と double-Gaussian fitting(赤線) を 行った. Single-Gaussian fitting(黒線) は中心部分とテールの部分を fitting がうまく出来ていな いことが分かる. Fitting の χ^2 は,

 \boxtimes 5.3: Fake missing E_X distribution \mathcal{O} fit

- single-Gaussian $\chi^2/\mathbf{\hat{e}}\mathbf{B}\mathbf{E} = 78.5/52$
- double-Gaussian $\chi^2/$ **自由** $\mathbf{E} = 51.13/49$

 \boxtimes 5.4: Fake missing E_X distribution \mathcal{O} fit(logscale)

であり、single-Gaussian から double-Gaussian にすることにより、大幅に fitting が良くなって いることが分かる.よって、次に述べる resolution の調査は、fake missing E_X 分布を double-Gaussian で fitting することにより行った.

Missing E_T resolution

 \boxtimes 5.5: Component of missing E_T resolution

図 5.5 は double-Gaussian fitting を行ったときの narrow 成分と broad 成分である. $\sum E_X$ を 100GeV ごとに区切り, 各 bin に対して fitting を行い resolution を求めた. 各 bin の fit のプロットは, 付録 B にまとめた.

TDR(図 2.13) では、missing $E_X(E_Y)$ の resolution を $\sum E_T$ の関数としている. この方法は、 missing E_T の reolution を求めるときは適切であるが、missing $E_X(E_Y)$ の resolution を求める ときは、 $\sum E_X(\sum E_Y)$ を用いる方が適切であると考えられる. なぜなら、jet activity が Y 軸方 向にある場合, fake missing は Y 軸方向に出るため, resolution を $\sum E_T$ の関数とすると $\sum E_T$ が大きいのに fake missing E_X が小さいことがあるからである. よって, 図 5.5 では fake missing E_X の resolution を $\sum E_X$ の関数としてプロットした.

図 5.5 で用いた double-Gaussian は、検出器の ϕ 方向の依存性を無視し、narrow component と broad component の Gaussian の中心を 0 と仮定した.また、統計の量が足りず、2 つの Gaussian の constant の比が bin によってばらついてしまい、後で述べる fast simulation への feed back が行いにくため、2 つの Gaussian の constant の比を 1/5 と仮定した.

 $\sum E_X = 300 \sim 400 \text{GeV}, 400 \sim 500 \text{GeV}$ の bin は, narrow component と broad component の大 きさが逆になっており, doble-Gaussian での fitting に失敗している. $\sum E_X = 1200 \sim 1300 \text{GeV}$ の bin については, broad componet が 7.78 × 10⁴ GeV と非常に大きく, 明らかに fitting に失敗 しているため, 図から除いた.

5.2.1 Topolodgy dependence

ここでは, missing E_T の topology dependence について述べる.

 \boxtimes 5.7: Z+3/6 jets \mathcal{O} transverse sphericity

Z+3jets と Z+6jets の missing E_X の分解能を調べることで, topology dependence の調査 を行った. 図 5.6 に示すように, Z+3jets は jet の本数が少ないため直線的なトポロジであり, Z+6jets は Z+3jets に比べて球形的なトポロジである. 図 5.7 に示した transverse sphericity を みると, Z+6jets の方が, より spherical であることが分かる.

図 5.8 は, $\sum E_X = 300 \sim 500$ GeV のときの fake missing E_X 分布である. Z+3jets サンプル と Z+6jets サンプルの fake missing E_X 分布は同じであり, topology dependence は無いことが 分かる.

同様の調査を QCD の 2 jets サンプルと 4 jets サンプルについても行った. 図 5.9 は, $\sum E_X = 800 \sim 1100 \text{GeV}$ のときの fake missing E_X 分布であり, 2 jets サンプルと 4 jets サンプルの分布 が同じであることから, QCD サンプルにおいても topology dependence は無いことが分かる.

5.3 Fast simulation $\land \mathcal{O}$ feed back

QCD は cross section は, SUSY の cross section に比べて非常に大きいため, missing E_T の テールが重要である. しかし, fast シミュレーションである Atlfast は double-gauusian の効果

 \boxtimes 5.8: Fake missing E_X distribution in Z+3/6 jets sample

 \boxtimes 5.9: Fake missing E_X distribution in QCD 2/4 jets sample

が入っていないため、5.2 で述べたように、テールの fitting が悪い single-Gaussian では正確な background の見積もりが出来ない. Atlfast の missing E_T のシミュレーションの精度を高める ために、5.2 で示した double-Gaussian で fitting を行った結果を用いて、Atlfast により精度の高 い missing E_T を実装した.

TDR の resolution(図 2.13) では $a \times \sqrt{\sum E_T}$ で fiting してあるが, 図 5.5 を見ると直線に近い. よって, narrow component については, $a \times \sum E_X + b$, broad component については, $c \times \sum E_X$ で χ^2 fitting を行った.

前節で述べたように、 $\sum E_X = 300 \sim 400 \text{GeV}, 400 \sim 500 \text{GeV}, 1200 \sim 1300 \text{GeV}$ の bin は、fake missing E_X 分布の double-Gaussian による fitting がうまく行えなかったため、直線による fitting から除いた.また、 $\sum E_X$ が1700 GeV 以上の bin は signal 数が1000 以下であり、resolution の error が大きいため、fitting から除いた. $\sum E_X = 300 \text{GeV}$ 以下の bin は、narrow components と broad component を fitting した直線の大小が入れ替わる領域であるため、fitting から除いた.よって、fitting に用いた範囲は図 5.5 中の緑の斜線の範囲である.

Fitting の結果を以下に示す.

• narrow component

 $a \times \sum E_X + b$ で fitting, $\chi^2/$ 自由度 = 5.55/9

a = 0.0171304, error= $\pm 0.0003882(2.054\%)$

b = 5.69599, error $\pm 0.3272(5.745\%)$

• broad component

 $c \times \sum E_X$ で fitting, $\chi^2/$ 自由度 = 5.35/10

c = 0.0336178, error= $\pm 0.0028(0.8329\%)$

broad component よりも narrow component が大きくなる領域 (おおよそ 300GeV 以下) では, single-Gaussian になると仮定し, resolution には narrow componet の値を用いた.

図 5.10: Fake E_T の生成

 \boxtimes 5.11: $\Delta \phi(jet_1, missingE_T)$

Jet の miss measurement が fake missing E_T を作るので, fake missing E_T の ϕ 方向は, 一番 ハードな jet の方向に平行であることが多い. $\sum E_X \ge \sum E_Y$ から fake missing Ex を計算す ると, 図 5.10 のように, 一番ハードな jet に垂直な方向にも fake missing E_T が生じてしまい, full simulation の結果と会わない. そこで, 一番ハードな jet の軸に平行な energy sum と垂直 な energy sum をパラメータにとり, fake missing E_T を計算した. 一番ハードな jet の軸に平 行な energy sum は軸に垂直な energy sum よりも大きいため, fake missing E_T は jet に平行 になりやすくなる. 図 5.11 は一番ハードな jet と missing E_T の $\Delta \phi$ である. "Full" (黒線) は full simulation の結果," double gaus smear" (青線) は X, Y 軸方向にパラメータをとった結果で あり、"double gaus smear jetaxis" (ピンクの線) は一番ハードな jet に垂直な軸と平行な軸方向 にパラメータをとった結果である.分布をみると、"double gaus smear jetaxis"の方が"double gaus smear"よりも、0 と π 付近で高く、 $\pi/2$ 付近で低い分布をしており、full simulationの分布 に近い.よって、X 軸と Y 軸方向の energy sum を用いるよりも、一番ハードな jet の軸に平行と 垂直な軸の energy sum をパラメータにとったほうが、より full simulationの結果に近づけられ ることが分かる.

 \boxtimes 5.12: Simulated fake missing E_X

図 5.12 は QCD 4jets sample C の fake missing E_X の分布である. Fast simulation の標準の fake missing E_T は, テールの部分が full simulation と一致していない. 一方 double-Gaussian で fitting した結果から求めた fake missing E_T 分布は full simulation と一致しているため, よ り精度の高い QCD background の見積もりをすることができる.

 \boxtimes 5.13: Real missing vs fake missing

図 5.13 は、QCD 4jets sample Cの real missing E_T と fake missing E_T 分布である. 黒線は real missing E_T , 赤線は上で説明した double-Gaussian の分布から作った fake missing E_T , 青 線は Atlfast の default の fake missing E_T を示している. QCD 4jets sample C は light flavour のサンプルであるが、ISR や FSR で放出された gluon が、 $b\bar{b}$ 、 $c\bar{c}$ に分裂することにより、多少の heavy flavour の quark が混じるため、real missing E_T が生じる. Heavy flavour の quark が生成 されるのは稀であるため、real missing の分布は 0 の bin が非常に高くなっている。Fake missing E_T と real missing E_T を比較すると、2~300 GeV 以上の missing E_T の領域では、fake missing は殆ど無く、real missing のみであることが分かる。従って、次章で述べる SUSY の selection において、大きな missing E_T を要求することを考えると、QCD サンプルにおいて background となるのは、fake missing E_T よりも real missing E_T が大きなイベントであるといえる。

Crack 領域

2.5 で述べたように, crack 領域には calorimeter の前に多くの物質があり, energy measurment の resolution が悪くなっている. そのため, crack 領域に jet が飛んだ場合に, missing E_T の resolution が悪くなると考えられるため, full simulation を用いて調査を行った.

比較には、すべての η に jet 放出されているサンプル (All eta sample) と、最低 1 本の jet が crack 領域に飛んでいるサンプル (crack sample) を用いた. crack の定義は、 $1.4 < |\eta| < 1.6$ と し、 ϕ 方向の依存性は無視した. また、データの生成は P_T ごとに bin を区切って行った.(付録 C の表 C.1)

 \boxtimes 5.14: Fake misssing E_X distributon in All $\eta \boxtimes$ 5.15: Fake misssing E_X distributon in crack sample sample

 \boxtimes 5.16: Resolution in all eta and crack sample

図 5.14, 図 5.15 は $\sum E_X = 1300 \sim 1400 \text{GeV} \, \boldsymbol{\sigma}$ fake missing E_X 分布である. 黒線は single-Gaussian $\boldsymbol{\sigma}$ fitting であり, 赤線は double-Gaussian $\boldsymbol{\sigma}$ fitting である. Crack の領域は明らかに

all eta sample 領域よりも resolution が悪くなっていることが分かる. さらに, all eta sample は double-Gaussian であるが, crack sample は single-Gaussian である.

図 5.16 は $\sum E_X$ を 100 GeV ごとに bin に区切り, 各 bin を double-Gaussian で fitting した 結果である. Double-Gaussian の fitting に失敗した bin については図から除いた. ほとんどの bin において crack sample は narrow component と broad component が同じ値であり, single-Gaussian であることが分かる. Crack sample で sigle-Gaussian になることから, all eta sample が double-Gaussian になるのは, energy resolutotion の eta dependence が原因であるといえる. Crack 領域の効果は fast simulation へ実装していない. これは, これからの課題である.

第6章 Backgroundの評価

6.1 Event selection と発見モード

- ここでは SUSY の基本的な selection について説明する.
- 1. $\not\!\!\!E_T > max(100 GeV, 0.2 M_{eff})$
- 2. 4本以上の jet ($|\eta| < 2.0, P_T > 50$ GeV, 一番八ードな jet は $P_T > 100$ GeV)
- 3. Transverse Sphericity > 0.2

SUSY のイベントトポロジは multijets と missing E_T であるため, missing E_T と jet を 4 本要 求している. また, 1.3.3 で述べたように, SUSY のイベントは, 直線ではなく球に近い形をして いるので, Transverse Sphericity による selection を行う.

1.2.3 で述べたように, SUSY 粒子の発見モードは 2 種類ある.

- 1. 0 lepton mode Isolated electron と isolated muon $(P_T > 15 GeV, |\eta| < 2.5)$ が無い
- 2. 1 lepton mode Isolated electron と isolated muon $(P_T > 15 GeV, |\eta| < 2.5)$ が1個 基本的な selection に加えて、transverse mass($\mathcal{E}_T, lepton$) > 100GeV

1 lepton mode については、W+jets の background を抑えるために、transvese mass が大きい ことを要求している。W+jets の background であれば、transverse mass は W の質量である 80GeV を超えることが無い. resolution を考慮して少し大きな 100GeV を要求する.

Background を見積もるにあたり, lepton の efficiency を表 6.1, Fake ratio を light flavour 起源と heavy flavour 起源に分けて、図 6.2, 図 6.3 のように、パラメータ化した. Efficiency は SUSY sample の SU1(m_0 =70 GeV, $m_{1/2}$ = 350 GeV, A = 0, $tan\beta$ = 10, sgn(μ) = +) の full simulation から求め, fake ratio は 4jet sample の full simultaion の結果から求めた. Isolation の 条件は electron が 5GeV, muon が 10GeV であり, cone size は両方とも 0.4 である. 統計誤差を 考慮して fake lepton が無かった P_T range に関しては, 1 個の fake lepton があるとして、図 6.2, 図 6.3 中に赤文字で示している. Efficiency については, isolated lepton の数が full simulation の数と同じになるように, fast simulation の efficiency を調整した. 図 6.1 のように fake lepton については, full simulation の結果に基づき, jet を lepton として扱った. また, tag されなかっ た electron は jet として扱った.

QCD background に関しては, 5.3 で述べた double-Gaussian 分布に従って, fake missing E_T を作った.

図 6.2 は 0 lepton mode の Effective mass であり、Background は Parton Shower で生成さ れたものである. 図 6.3 は Matrix Element で backgournd を生成している. これらの図より、 Matrix Element の study は Parton Shower に比べて、以下のことが分かる.

表 6.1: Lepton efficiency

P_T range (GeV)	electron	muon
$P_T \ 15-35$	0.68	0.72
$P_T \ 35-50$	0.71	0.75
$P_T 50-80$	0.71	0.76
$P_T 80-130$	0.67	0.76
$P_T 130-200$	0.54	0.75
$P_T 200$ -	0.32	0.74

表 6.2: Lepton fake ratio(light flavour 起源)

...

P_T range (GeV)	electron	muon
$P_T 15-35$	5.62×10^{-4}	2.43×10^{-4}
$P_T \ 35-50$	3.22×10^{-4}	$\leq 2.15 \times 10^{-5}$
$P_T 50-80$	2.26×10^{-4}	$\leq 1.88 \times 10^{-5}$
$P_T 80-130$	2.14×10^{-4}	$\leq 2.14 \times 10^{-5}$
P_T 130-200	1.31×10^{-4}	$\leq 2.63 imes 10^{-5}$
$P_T 200$ -	7.31×10^{-6}	$\leq 7.31 \times 10^{-6}$

1. Background の量が factor $2 \sim 5$ 倍

2. Background の傾きが, signal の傾きに近い.

MEによる study より, 基本的な SUSY の selection では SUSY の発見は容易ではなく, selection の最適化が必要であることがわかる.

図 6.4 は 1 lepton mode \mathcal{O} effective mass である. 0 lepton mode に比べて, SUSY \mathcal{O} signal の数は減るが, それ以上に background の数が減る. 1 leptonmode \mathcal{O} dominant background は $t\bar{t} + jets$ のみであることも重要な利点である. $t\bar{t} + jets$ \mathcal{O} cross section は予言可能であり, background の種類が 1 種類であるので, 外挿による background の見積もりがしやすい. 以上より, 1 lepton mode は 0 lepton mode よりも発見能力が高いと言える.

6.2 Selection の最適化

ここでは selcection の最適化について述べる.

ATLAS で使われている significance は, signal の数を s, background の数を b として,

$$S_f = \frac{s}{\sqrt{b}} \tag{6.1}$$

で与えられる.

まず、 m_0 については 100GeV~2000GeV の領域を 100GeV 間隔、 $m_{1/2}$ については 100GeV~1500GeV の領域を 50GeV 間隔で区切り、格子状に点を選んだ. 選んだ各点の SUSY の signal を Pythia を用いて生成した.次に、表 6.4 にあるように、missing $E_T(E_T)$ 、leading jet の $P_T(P_{T,1})$ 、2~4

 \boxtimes 6.1: Lepton fake and efficiency

 \boxtimes 6.3: Effective Mass 0 lepton mode(ME

 \boxtimes 6.2: Effective Mass 0 lepton mode(PS study) study)

P_T range (GeV)	electron	muon
$P_T 15-35$	1.32×10^{-3}	2.38×10^{-3}
$P_T \ 35-50$	1.28×10^{-3}	$\leq 4.27 \times 10^{-4}$
$P_T 50-80$	$\leq 3.65 \times 10^{-4}$	$\leq 3.65 imes 10^{-4}$
$P_T 80-130$	1.14×10^{-3}	$\leq 3.80 imes 10^{-4}$
P_T 130-200	4.75×10^{-4}	$\leq 4.75\times 10^{-4}$
P_{T} 200-	$\leq 3.61 \times 10^{-4}$	$\leq 3.61 \times 10^{-4}$

表 6.3: Lepton fake ratio(heavy flavour 起源)

⊠ 6.4: Effective mass 1 lepton mode (ME study)

番目に hard な jet の $P_T(P_{T,2,3,4})$, transverse sphericity を変化させ, S_f が最大となるパラメー タを求めた.

図 6.5, 図 6.6 は, $m_0-m_{1/2}$ 平面での missing E_T の selection の値を示している. ATLAS では, SUSY の発見に対して signal の数が 10 以上と定義されているので, signal の数が 10 未満であっ た SUSY のパラメータの点では,要求する missing E_T を 0 としてある. 0 lepton mode につい ては, $m_{1/2}$ が大きくなるほど, 大きな missing E_T を要求している. これは, $m_{1/2}$ が大きくなる ほど $\tilde{\chi}_1^0$ の質量が重くなるので, missing E_T が大きくなるからである.

図 6.7, 図 6.8 は要求する leading jet の $P_T(P_{T,1})$ を示している. Signal の数が 10 未満で あった SUSY のパラメータの点では, 要求する P_T を 0 としてある. 0 lepton mode において, $m_{1/2}$ が大きくなるほど大きな P_T を要求しているのは, $\min(m(\tilde{q}), m(\tilde{g}))) と <math>m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^{\pm})$ の

表 6.4: Scan variable

variable	lower limit	upper limit
E_T	100	1000
$P_{T,1}$	100	1000
$P_{T,2,3,4}$	50	500
transverse sphericity	0.1	0.3

 \boxtimes 6.5: Required missing E_T for 0 lepton mode \boxtimes 6.6: Required missing E_T for 1 lepton mode

 \boxtimes 6.7: Required $P_{T,1}$ for 0 lepton mode

 \boxtimes 6.8: Required $P_{T,1}$ for 1 lepton mode

差が大きくなり、 P_T の大きなな jet が放出されるためである. また、中央に溝が見えるのは、 $m(\tilde{g}) > m(\tilde{t}) > m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^{\pm})$ となり、崩壊の段数が増えるので jet の P_T が小さくなるのが原因である.

図 6.9, 図 6.10 は要求する 2~4 番目に hard な jet の $P_T(P_{T,2,3,4})$ を示している. Signal の数 が 10 未満であった SUSY のパラメータの点では, 要求する P_T を 0 としてある. 0 lepton mode において, m_0 が大きな領域で要求される P_T が高くなっている. この領域では, \tilde{g} が \tilde{q} よりも軽 くなるため大量に生成され, $\tilde{g} \rightarrow qq\tilde{\chi}$ の崩壊をする. よって, \tilde{q} が大量に生成され, $\tilde{q} \rightarrow q\tilde{\chi}$ の崩壊をする領域よりも hard な jet の本数が多くなるからである.

1 lepton mode については、missing E_T , $P_{T,1}$, $P_{T,2,3,4}$ ともに、0 lepton mode よりもパラメー タの変化が少ない、これは、1 lepton mode は signal の数が少ないために、selection を厳しくす ると signal の数が減りすぎ、 S_f が小さくなってしまうためである。

図 6.11,図 6.12 は, selection を最適化したときの Effective Mass の分布である. SUSY の signal は,4.1 で説明したパラメータを用いており, $m(\tilde{g}) \sim m(\tilde{q}) \sim 1TeV$ である. 最適化され た selection を表 6.5 に示す. 0 lepton mode, 1 lepton mode 共に, 大きな missing E_T を要求し, background を抑えている. 最適化前 (図 6.3,図 6.4) に比べ, signal の数が background の数より も大幅に多くなっており, 十分発見可能であることが分かる.

6.3 SUSY 発見能力

ここでは ATLAS の SUSY 発見能力について述べる.

⊠ 6.9: Required $P_{T,2,3,4}$ for 0 lepton mode ⊠ 6.10

 \boxtimes 6.10: Required $P_{T,2,3,4}$ for 1 lepton mode

⊠ 6.11: Effective Mass 0 lepton mode (opti- ⊠ 6.12: Effective Mass 1 lepton mode (optimized selection) mized selection)

ATLASでは, s > 10 かつ $S_f > 5$ であれば, SUSY を発見可能であると定義している. Selection の最適化は, m_0 - $m_{1/2}$ 平面の SUSY の signal を生成した各点で, S_f が最大になるようにパラ メータを決定した.

図 6.13 は integrated luminosity が $1fb^{-1}$ での発見能力,図 6.14 は integrated luminosity が $10fb^{-1}$ での発見能力である. 線は, $S_f > 5$ かつ s > 10 以上を満たす領域の端の部分を結んだ ものであり,線よりも $m_{1/2}$ が小さい領域で SUSY が発見可能であることを示している.

図 1.7 の $\tilde{g} \geq \tilde{q}$ の mass contour を見ると、 $1fb^{-1}$ で min(m(\tilde{g}),m(\tilde{q}))~1.5 TeV の SUSY、 $10fb^{-1}$ で min(m(\tilde{g}),m(\tilde{q}))~2 TeV の SUSY まで、発見可能であることが分かる.

0 lepton mode と 1 lepton mode を比較すると、1 lepton mode は 0 lepton mode に比べ て、signal も減るがそれ以上に background の数を落とすことができる. しかし、significance が $S_f = \frac{s}{\sqrt{b}}$ で定義されているために background の減りが root でしか効かないため、0 l mode よ りも発見能力が狭くなっている. さらに、1 lepton mode は signal の数が少ないため、s > 10 と いう条件で discovry potential が狭くなる.

図 6.15 は従来考えられていた発見能力 [3] であり、本研究で得られた発見能力の方が、全体的 に 100GeV 程度 $m_{1/2}$ が小さくなっている. ME の study により background の量が数倍になっ ているにもかかわらず、 $m_{1/2}$ が 100GeV 程度しか小さくならないのは、下の 2 つの原因が考え られる.

- 1. Background は root でしか S_f に効かないから.
- 2. 昔の generator には繰り込み群方程式の解にバグがあり、SUSY 粒子の質量が重くなって

いるため、発見能力が過小評価されているから.

図 6.16 は、0 lepton mode と 1 lepton mode のどちらの S_f が大きいかを示した図である. 赤のマークは 0 lepton mode の方が S_f が大きいことを示し、青のマークは 1 lepton mode の方が S_f が大きいことを示している. $m_{1/2}$ が 200GeV ~ 700GeV の広い領域で 1 lepton mode の方が S_f が大きく、1 lepton mode は優れた発見チャンネルであるといえる.

6.4 系統誤差の評価

6.4.1 MLM method の不定性

MLM method の不定性を見るために, matching を取る jet の P_T の下限を変化させ, background の量がどれくらい変化するかを調べた. 例えば, $Z \rightarrow \nu\nu$ +Njets サンプルでは, ME で生 成している parton の最低の P_T は 40GeV であるので, 40GeV 以上の jet の matching を取って いる. 40GeV の jet の分解能が約 5GeV であり, jet の cone size の不定性や fast simulation の 不定性を考え, 5GeV の倍の ±10GeV ずらし, 30GeV と 50GeV 以上の jet の matching を調べ た. P_T を 30GeV にすると jet 数が多くなるので matching を通りにくくなり, 50GeV にすると その逆で通りやすくなる.

表 6.6 は、matching を取る jet の P_T の下限を ±10GeV 変えたときの、background の量の変 化を示している。Background の量は 0 lepton モードの標準の selection をかけた後の量を用い た. $t\bar{t}$ の 4 本目以降、W/Z+jets の 7 番目以降の parton は PS で生成するため、 $t\bar{t}$ +3jets サンプ ルは 2 本以上の jet、W/Z+6jets サンプルは 5 本以上の jet を要求し、jet 数で matching を取っ た. よって、 $t\bar{t}$ +3jets、W/Z+6jets のサンプルでは、matching を取る jet の P_T の下限を-10GeV した方が jet が増えるため matching を通りやすくなり、他のサンプルとバックグランド数の増 減が逆になっている。

図 6.15: 従来考えられていた発見能力 (10fb⁻¹)

⊠ 6.16: Superior mode

表 6.6 より, $Z \rightarrow \tau \tau$ サンプル以外は, おおよそ 20%の不定性が有ることがわかる. $Z \rightarrow \tau \tau$ サ ンプルの不定性が約 50%と大きいのは、ME で生成している parton の最低の P_T が 20GeV と 小さく, ME が発散する領域に近いためと考えられる. $Z \rightarrow \tau \tau$ サンプルの不定性は大きいが, 支配的なバックグランドではないため、発見能力の不定性に対してほぼ影響が無い.

Pt of Jet for matching	Default	-10 GeV	+10 GeV		
Process	# BG(10fb-1)	#BG(10fb-1)	#BG(10fb-1)	uncertainty (%)	uncertainty (%)
$t\bar{t} \ (WW \to lnqq)$					
Ojet	6299.85	5512.16	7358.56	-12.5	16.8
1 jet	16097	14065.9	18215.3	-12.6	13.2
2 jets	12919.2	11311.5	14282.4	-12.4	10.6
$3 ext{jets}$	6132.55	7248.91	4397.96	-28.3	18.2
$t\bar{t} \ (WW \to lnln)$					
0jet	16.2162	14.7523	27.7027	-9.0	70.8
1 jet	395.549	345.341	519.75	-12.7	31.4
2 jets	1086.01	932.887	1254.32	-14.1	15.5
3 jets	1343.84	1350.75	1298.88	-3.3	0.5
$W \rightarrow ln + iets$					
2 jets	1259.12	1077.99	1736.48	-14.4	37.9
3 jets	5979.56	5166.93	7189.66	-13.6	20.2
4 jets	6017.22	5125.47	6927.83	-14.8	15.1
5 jets	2408.87	2005.09	2782.85	-16.8	15.5
6 jets	981.42	1057.25	765.408	-22.0	7.7
$Z \rightarrow \tau \tau \perp iots$					
2 777 TJUG	80 2503	35 3268	155 494	-56.0	03.8
2jets Siets	227 912	95 0404	$432\ 872$	-58.3	80.0
4 iets	254 492	97 0703	505.078	-61.9	98.5
5 jets	180 597	68 209	381 343	-62.2	111.2
6jets	353.208	366.038	171.698	-51.4	3.6
$Z \rightarrow \nu \nu + \text{jets}$					
2jets	359.398	304.261	582.206	-15.3	62.0
3 jets	3297.64	2790.54	4092.67	-15.4	24.1
4 jets	5266.53	4427.16	6152.63	-15.9	16.8
5 jets	2869.15	2347.49	3359.68	-18.2	17.1
6jets	1826.58	1951.83	1431.08	-21.7	6.9

6.4.2 Cross section の不定性

粒子が衝突するときのスケールである hard scatter scale は任意に取ることができる量であ るため, generator で求めた cross section に不定性が生じる.本論文では,jet が1本につき,ファ クター 1.15 の不定性があると仮定する.例えば, Z+2jets では 1.15², Z+4jets では 1.15⁴ の不 定性があるとする.

6.4.3 発見能力の系統誤差

Genarator の系統誤差を \sqrt{b} とし、さらに前に述べた matching の不定性、cross section の不定性を用いて、background の誤差を求めた。Background の誤差は誤差伝播の法則*を用いて足し合わせ、 S_f の誤差を $\pm \Delta S_f = \frac{s}{\sqrt{b \pm b \text{ ogg} \Xi}}$ とした。Signal の生成量は、発見能力の上限の辺りで

 $^{^*\}Delta b_1,\,\Delta b_2,\,\Delta b_3...$ を独立な誤差とすると, 誤差の足し合わせは $\sqrt{\sum_i \Delta b_i^2}$ である.

図 6.17: 発見能力の系統誤差 (1fb⁻¹)

図 6.18: 発見能力の系統誤差 (10fb⁻¹)

 $10^3 \sim 10^4 f b^{-1}$ と十分な量であるため, signal の誤差は考えない. 図 6.17, 図 6.17 は, 発見能力の 系統誤差を示している. 系統誤差は積分ルミノシティーが $1 f b^{-1}$ で約 $m_{1/2}$ が ± 50 GeV, $10 f b^{-1}$ で約 $m_{1/2}$ が ± 100 GeV 程度であり, 本研究で求めた発見能力は精度が高いことが示された.
第7章 まとめ

今までの Parton Shower の background の評価は, PS がハードな jet を生成することができ ないため過小評価であった. 本論文では Matrix Element を用いて jet を生成し, データの生成を 行った.

Missing E_T は SUSY の重要な信号であるが、検出器の resolution は有限なため fake missing E_T が生じる. QCD background の cross section は SUSY の cross section に比べて非常に大き いため、QCD background の評価を行うためには、fake missing E_T を正確に取り扱う必要がある. Fast simulation の default の missing E_T は full simulation の fake missing E_T 振る舞いを 再現することができていないので、Full simulation の fake missing E_T をパラメータ化し fast simulation に実装した.

その結果, 0 lepton mode では background が PS study の 2~5 倍程度になり, さらに background と signal の分布の形が似ているために,基本の selection では発見が容易ではなく, selection の最適化が必要であることが分かった. また, 1 lepton mode は 0 lepton mode よりも background の量が少なく, dominant な background が $t\bar{t}$ +Njets だけであるので, background が見積もりやすく,優れた発見チャンネルであることが分かった.

最後に、selection を最適化した結果、ATLAS 検出器では $10fb^{-1}$ で約 2TeV の SUSY の発見 能力があることが分かった.

付録A Parton Distribution Function

陽子は複合粒子であるため、陽子陽子衝突で実際に衝突するのは陽子を構成する parton の いずれかである. 陽子中の parton($u, \bar{u}, d, \bar{d}, gluon$ 等)の存在する確率を Parton Distributon Function(PDF)と呼び、陽子全体のエネルギーに対する割合 x とエネルギースケールの Q^2 で

$$f_i(x, Q^2) \tag{A.1}$$

と表される. これは, *Q²* のエネルギースケールで見たとき parton i がエネルギーを陽子のエネ ルギーの x の割合だけ持っている確率密度分布である.

陽子陽子衝突では図 A.1 のように各陽子から i,j がエネルギー x_1, x_2 の割合のエネルギーを 持って衝突する場合, parton i,j がエネルギー x_1, x_2 を持っている確率を考慮に入れて, その cross section は実効的には,

$$f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(Q^2))$$
(A.2)

のようになる. よって total cross-section は

$$\sigma(P_1, P_2) = \int f_i(x_1, Q^2) f_j(x_2, Q^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(Q^2))$$
(A.3)

 \boxtimes A.1: PDF \succeq cross section

図 A.2, 図 A.3 は $Q^2 = (10 GeV)^2 \geq Q^2 = (100 GeV)^2$ の各 partonの PDF である. 特徴は以下の点である.

- 1. low x の領域では分布が大きくなる.
- 2. 陽子の構成粒子である u,d の PDF には x=1/3 付近に山がある.
- 3. Q^2 を大きくすると, low x σ parton が多くなる.

 \boxtimes A.2: $Q^2 = (10 GeV)^2 \mathcal{O}$ PDF

 \boxtimes A.3: $Q^2 = (100 GeV)^2 \mathcal{O}$ PDF

 \boxtimes A.4: valence quark \succeq sea quark \mathcal{O} PDF

PDF はもともとの陽子の構成粒子である, valence quark と, 陽子内で gluon が $q\bar{q}$ に分裂して一時的にできた sea quark の 2 種類の PDF が重なったものである. (A.4)

sea quark はエネルギーが小さいほうが生成されやすいため, low x になるほど分布が多くなる. 一方 valence quark の PDF は, 陽子が uud の 3 個の quark からできているため, 1/3 にピー クのある形をしている.

 Q^2 が大きくなると、 $1/Q^2$ に比例した小さな空間を見ていることになり、高次の order まで見えるので、low x の sea quark が増加する.(図 A.5)

Q2が小さいと 小さな領域が見えない

図 A.5: Q² による効果

付録B QCD 4jets sampleの double-Gaussian fiting

図 B.1: QCD 4jets sample の double-Gaussian fitting 1. 図中の p1 が narrow components の 値 (GeV), p2 が broad components の値 (GeV) である.

図 B.2: QCD 4jets sample の double-Gaussian fitting 2. 図中の p1 が narrow components の 値 (GeV), p2 が broad components の値 (GeV) である.

図 B.3: QCD 4jets sample σ double-Gaussian fitting 3. 図中 σ p1 \acute{m} narrow components σ 値 (GeV), p2 \acute{m} broad components σ 値 (GeV) である.

付録C Generated Background

表 C.1: Di-jet sample

	all eta sample	P_T range (GeV)	cross section (mb)	#generated events
-	J1	$17 \sim 35$	1376	about 20000
	J2	$35 \sim 70$	$9.327 imes 10^{-2}$	about 20000
	J3	$70 \sim 140$	5.884×10^{-3}	about 20000
	J4	$140 \sim 280$	3.084×10^{-4}	about 20000
	J5	$280 \sim 560$	1.247×10^{-5}	about 20000
	J6	$560 \sim 1120$	3.604×10^{-7}	about 20000
	J7	$1120 \sim 2280$	5.707×10^{-9}	about 20000
	J8	$2280 \sim$	2.444×10^{-11}	about 20000
	I	1		
	crack sample	P_T range (GeV)	filter pass rate	# generated events
:	crack sample J1 Crack	P_T range (GeV) $17 \sim 35$	filter pass rate 0.01621	# generated events about 8000
:	crack sample J1 Crack J2 Crack	$P_T \text{ range (GeV)}$ $17 \sim 35$ $35 \sim 70$	filter pass rate 0.01621 0.02181	# generated events about 8000 about 8000
:	crack sample J1 Crack J2 Crack J3 Crack	$P_T \text{ range (GeV)}$ $17 \sim 35$ $35 \sim 70$ $70 \sim 140$	filter pass rate 0.01621 0.02181 0.02518	# generated events about 8000 about 8000 about 8000
:	crack sample J1 Crack J2 Crack J3 Crack J4 Crack	$\begin{array}{c} P_T \text{ range (GeV)} \\ 17 \sim 35 \\ 35 \sim 70 \\ 70 \sim 140 \\ 140 \sim 280 \end{array}$	filter pass rate 0.01621 0.02181 0.02518 0.02746	<pre># generated events about 8000 about 8000 about 8000 about 8000</pre>
:	crack sample J1 Crack J2 Crack J3 Crack J4 Crack J5 Crack	P_T range (GeV) $17 \sim 35$ $35 \sim 70$ $70 \sim 140$ $140 \sim 280$ $280 \sim 560$	filter pass rate 0.01621 0.02181 0.02518 0.02746 0.02697	# generated events about 8000 about 8000 about 8000 about 8000 about 40000
:	crack sample J1 Crack J2 Crack J3 Crack J4 Crack J5 Crack J6 Crack	$P_T \text{ range (GeV)} \\ 17 \sim 35 \\ 35 \sim 70 \\ 70 \sim 140 \\ 140 \sim 280 \\ 280 \sim 560 \\ 560 \sim 1120 \\ \end{cases}$	filter pass rate 0.01621 0.02181 0.02518 0.02746 0.02697 0.02372	# generated events about 8000 about 8000 about 8000 about 8000 about 40000 about 8000

process	generator cut and scale
$W \rightarrow e\nu, \mu\nu$	$P_T > 40 \text{GeV}$ and eta < 2.7 for all jets
	$P_T > 80 \text{GeV}$ for 2jets
	scale= $m(W)^2 + P_{T,W}^2$
$Z \rightarrow \nu \nu$	$P_T > 40 \text{GeV}$ and $ \eta < 5.0$ for all jets
	scale= $m(Z)^2 + P_{T,Z}^2$
$Z \rightarrow \tau \tau$	lepton $P_T > 10 \text{GeV}$ both and $ \eta < 2.5$
	Mll = 50-500 GeV
	jet $P_T > 20 \text{GeV} \eta < 5 \ R > 0.7$
	scale= $m(Z)^2 + P_{T,Z}^2$
$t\bar{t} \rightarrow l\nu qq$	$P_T > 40 \text{GeV}$ and $ \eta < 2.6$ for all jets
	$R_{jj} > 0.7$
	scale= $m(t)^2$ +mean of $P_{T,jet}^2$
$t\bar{t} \rightarrow l\nu l\nu$	$P_T > 40 \text{GeV}$ and $ \eta < 2.6$ for all jets
	$R_{jj} > 0.7$
	scale= $m(t)^2$ +mean of $P_{T,jet}^2$

表 C.2: Background generator cut

		(fb)	$\mathcal{L}(fb^{-1})$
$W \rightarrow e\nu, \mu\nu$	W+2jets	310	15.9
	W+3jets	157	126.7
	W+4jets	49.3	42.4
	W+5jets	12.3	68.8
	W+6jets	2.65	264.8
$Z \rightarrow \nu \nu$	Z+2jets	350	39.9
	Z+3jets	96.4	42.3
	Z+4jets	24.5	95.0
	Z+5jets	5.70	69.7
	Z+6jets	1.20	120.0
$Z \rightarrow \tau \tau$	Z+2jets	122	71.9
	Z+3jets	53.1	87.7
	Z+4jets	20.6	102.4
	Z+5jets	7.22	67.0
	Z+6jets	2.3	26.5
$t\bar{t} \rightarrow l\nu qq$	tt+0jet	235.7	66.6
	tt+1jet	115.8	62.8
	tt+2jets	40.4	50.5
	tt+3jets	11.6	68.5
$t\bar{t} \to l\nu l\nu$	tt+0jet	58.9	88.8
	tt+1jet	28.9	71.9
	tt+2jets	10.1	67.2
	tt+3jets	2.92	53.9

表 C.3: Genarated background

 ${\ensuremath{\overline{\mathbf{z}}}}$ C.4: QCD background generator cut

process	generator cut
bb+2jets	all 4jets $P_T > 40 GeV \eta < 2.7$
	at least one jet $P_T > 80 GeV$
4jets sample a	all 4jets $P_T > 40 GeV \eta < 2.7$
	highest P_T jet $400 GeV > P_T > 80 GeV$
4jets sample b	all 4jets $P_T > 40 GeV \eta < 2.7$
	highest P_T jet $600 GeV > P_T > 400 GeV$
4jets sample c	all 4jets $P_T > 40 GeV \eta < 2.7$
	highest P_T jet $800GeV > P_T > 600GeV$
4jets sample d	all 4jets $P_T > 40 GeV \eta < 2.7$
	highest P_T jet $P_T > 800 GeV$

scale=mean P_T of jets

1	I (=)	_ / 1\
	(fb)	$L(fb^{-1})$
bb + 2jets	5.52	18.7
4jets sample a	179×10^3	0.2
4jets sample b	1.53×10^3	9.35
4jets sample c	$0.2 imes 10^3$	33
4jets sample d	51	100

 ${\bf \overline{\xi}}$ C.5: Genarated QCD background

参考文献

- CERN/LHCC/99-14,"ATLAS Detector and Phisics Performance Technical Design Report Volume1", ATLAS TDR 14, 25 MAY 1999.
- [2] CERN/LHCC/99-15,"ATLAS Detector and Phisics Performance Technical Design Report Volume2", ATLAS TDR 15, 25 MAY 1999.
- [3] SHEF-HEP/02-4, "Inclusive SUSY Searches and Measurements at ATLAS", D.R. Tovey
- [4] CERN/LHCC/96-40," Calorimeter Performance Technical Design Report", ATLAS TDR 14, 23 Jan 1997.
- [5] geant4 homepage http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html
- [6] Pythia homepage http://www.thep.lu.se/ torbjorn/Pythia.html
- [7] Alpgen homepage http://mlm.home.cern.ch/mlm/alpgen/
- [8] Mangano's homepage http://mlm.home.cern.ch/mlm/
- [9] ATLAS Internal Note "ATLFAST2.0 a fast simulation package for ATLAS"

謝辞

本研究を行うにあたり,助言と指導をして下さった小林富雄教授[®]に心から感謝いたします. また,浅井祥仁助教授[®]には,基本的な物理や検出器の構造,物理解析の方法など,様々な指導を して頂きました.深く感謝しております.

田中 純一氏^a には,計算機システムやプログラムの技術面で大変お世話になり,大変感謝して おります.金谷 奈央子女史^c には,検出器の構造やアルゴリズムを指導していただき,深く感謝 しております.物理解析のご指導をして頂いた,神前純一氏^b,田中礼三郎氏^d に深く感謝してお ります.また,研究を円滑に進められるように計算機の環境を整えてくださった,真下哲郎氏^a, 上田郁夫氏^a に深く感謝しております.本研究において重要なレプトンのフェイクについて指 導していただいた,陣内修氏^b,麻植健太氏^a に深く感謝しております.

研究生活を行う上で様々なアドバイスをして下さった,片岡真由子女史^a,南條創氏^e,片岡洋 介氏^a,藤井祐介氏^a,野本裕史氏^aに深く感謝しております.また,同期である中村浩二氏^f,山 口 嘉樹氏^a,後輩である兼田充氏^a,是木玄太氏^a,くわ原隆志氏^aのおかげで楽しい研究生活を 過ごすことができました.深く感謝しております.

また,秘書の朝日恵美さん^b,湯野栄子さん^a,伊藤千代さん^a,小野涼子さん^a,塚本郁絵さん^a には大変お世話になりました,本当にありがとうございました.

所属:

東京大学 素粒子物理国際研究センター (ICEPP)^a 高エネルギー加速器研究機構 (KEK)^b 神戸大学 自然科学研究科^c 岡山大学 理学部 物理学科^d 京都大学 理学部 物理学科^e 筑波大学 物理学系^f