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ABSTRACT

Recently, in elementary particle physics research, exploring new physics beyond the stan-
dard model has been actively conducted. However, there is no clear evidence of such a
new physics to date but of some anomalies. To tackle this situation, we have searched for

lepton flavor violating muon decay mediated by a new light particle. The charged lepton flavor
violation is one of the powerful tools to search for new physics beyond the standard model. On the
other hand, light new physics has attracted a great deal of attention. In the analysis performed
in this thesis, we combined these directions and have searched for the µ+ → e+X, X→ γγdecay
using the full datasets (2009–2013) of the MEG experiment.

The MEG experiment was designed to search for lepton flavor violating muon decay, µ+ →
e+γ , not for µ+ → e+X, X → γγ . However, we made full use of the resources developed for the
µ+ → e+γ search. We have newly developed reconstruction methods and dedicated corrections for
the µ+ → e+X, X → γγ search. The search analysis has been completely renewed; we combined
blind, cut-counting, and maximum likelihood analysis. The full datasets of the MEG experiment,
which corresponds to 7.5×1014µ+s decay on the target, were analyzed. No significant excess was
found in the mass region of 20–45 MeV, lifetime below 40 ps. Thus, we set the most stringent
branching ratio upper limits in the mass region of 20–40 MeV. Especially, upper limits are pushed
down to the level of O (10−11) for 20–30 MeV.

It is at most 60 times stringent result than the bound converted from the previous experiment,
the Crystal Box experiment. Together with the previous analysis using the first-two-year (2009
and 2010) physics data of the MEG experiment, this is the first direct search of the µ+ → e+X, X→
γγdecay in the world.
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INTRODUCTION

Physics is the natural science that tries to explain all the phenomena as simple as possible

from the smallest number of laws. Elementary particle physics is one of the physics fields

that studies the fundamental matter, elementary particles, and their mechanics in space

and time. Huge numbers of theoretical and experimental studies have revealed a secret of the

elementary particle physics and have established a milestone, the standard model.

The standard model of particle physics explains matter and forces well. In 2012, the last

particle, the Higgs boson, which is predicted from the standard model, has been discovered in the

ATLAS and CMS experiments [1, 2]. In the next year, the Nobel prize was awarded jointly to F.

Englert and P. W. Higgs [3] for the theoretical discovery of the Brout-Englert-Higgs mechanism.

With this discovery, the standard model has been "completed". However, there are unsolved

mysteries in nature; we still have a long way to go towards the final goal of particle physics, the

theory of everything.

The first extension of the standard model is the neutrino mass. Neutrinos are included in the

standard model, but their masses are originally assumed to be 0. In 1998, neutrino oscillations

have been discovered, which clearly shows a non-zero value of the neutrino mass. The nobel

prize was awarded jointly to T. Kajita and A. B. McDonald [4] for this discovery. Recent topics

in elementary particle physics research have been exploring new physics beyond the standard

model. The neutrino mass was one of these topics.

However, there is no clear evidence of new physics to date but for some anomalies. In this

thesis, we try to tackle this situation by combining two different directions: charged lepton flavor

violation and light new physics.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Fermions in the standard model. Quarks and leptons (charged leptons and neutrinos)
have three generations (I, II, and III).

1.1 Charged lepton flavor violation

Fermions in the standard model compose matters in nature and they are summarized in Fig-

ure 1.1. These particles can be divided into two sectors: quarks and leptons. Each sector has

six species, called flavor. Leptons are further divided into charged leptons and neutral leptons

(neutrinos). There are three generations and the higher generations are just copies of the lowest

one. The only difference is their masses.

One of the striking features of these particles is an inter-generational mixing, called flavor

violation. In the quark and neutrino sectors, this phenomenon has already been discovered.

However, in the charged lepton sector, it has not yet been discovered. The observation of neutrino

oscillations suggests that the lepton flavor is not conserved in nature. Therefore, it is natural

that the charged lepton flavor is violated even though the charged lepton flavor violation (CLFV)

is forbidden in the standard model. It can occur at an experimentally observable rate in the

framework of new physics beyond the standard model such as the grand unified theories. This is

the reason why there are a lot of efforts to find a hint of CLFV in the world [5].

The MEG experiment at Paul Scherrer Institut (PSI) in Switzerland searched for one of the

charged lepton flavor violating processes, µ+ → e+γdecay, with the highest sensitivity in the

world. No evidence of the decay was found, leading to a new upper limit on the branching ratio of

2
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4.2×10−13 (90%C.L.) [6]. The collaboration is preparing the upgraded experiment, the MEG II

experiment, to achieve a sensitivity below 6×10−14 after three-year-data taking [7]. Other CLFV

experiments such as Mu3e [8], Mu2e [9], and COMET [10] are planned in the 2020s.

These searches, however, assume new particles with a CLFV coupling whose mass is much

heavier than that of the related particles (MeV range). No hints for new physics in the CLFV

searches may suggest new physics exist in the lighter scale, that is, MeV scale.

1.2 Light new physics

There are two directions in particle physics experiments: intensity-frontier experiments and

energy-frontier experiments. The MEG experiment is one of the intensity-frontier experiments.

The Large Hadron Collider (LHC), one of the energy-frontier experiments, has also searched

for new physics, but no hint has been observed. Therefore, the importance of searches for new

physics in a completely different approach is increasing. Recently, unconventional searches such

as displaced vertex searches and long-lived particle searches have been proposed [11–13] both in

the ATLAS [14] and CMS [15] experiments in LHC. In addition, there are several proposals for

new projects to search for these unconventional signals in LHC: MATHUSLA [16], MilliQan [17–

19], Codex-b [20], SHiP [21–23], and FASER [24–27]. Some of these searches assume new particles

exist in the lighter (MeV) range.

There are several implications of light (MeV range) new physics both experimentally and

theoretically. In 2016, a Hungarian group reported a possibility of an existence of a new particle

X17 with a mass of 17 MeV [28]. Furthermore, new evidence supporting the existence was

reported in 2019 [29]. Possible explanations of the observation are summarized in Ref. [29]. A

Russian group reported a possibility of a new light scalar particle with a mass of 38 MeV in

photon pairs spectra [30, 31] in 2015. The KOTO experiment reported an excess of events in the

signal region of KL → π0νν̄ decay [32]. Possible explanations of the excess including new light

scalars are discussed in Ref. [33, 34]. Theoretically, there are several ideas to explain anomalies

with the light particles: light scalars that carry lepton number and solve the (g−2)e anomaly are

proposed [35]. Axion-like particles with lepton-flavor violating couplings can offer new ways to

explain the anomalies related to the magnetic moments of muon and electron [36]. No observation

of µ+ → e+γdoes not directly indicate that µ+ → e+X, X→ γγdoes not exist, neither.

A possible search for such a new light particle in the MEG experiment is µ+ → e+X, X →
γγ (MEx2G) decay process, where a (pseudo) scalar X is generated via a lepton flavor violating

coupling and the on-shell X decays into standard model particles, two γs. In this thesis, we search

for this decay process using the full dataset of the MEG experiment. In the search, we assume

X is long-lived and the width of mX is narrow. Axion-like particles [37–40], majoron [41, 42],

familon [43–46], flavon [47, 48], flaxion [49], hierarchion [50] and strongly interacting massive

particles [51, 52] can be possible candidates of X.

3
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µ+ → e+X, X→ γγDECAY

In this chapter, the information needed for the MEx2G search is summarized. First, we

review muon and its decay modes which are needed for the analysis. Then we discuss

possible parameter space for the search after summarizing constraints from the other

experiments. Finally, kinematics and background are discussed, which is needed for the MEx2G

event reconstruction and its search analysis.

2.1 Muon in the standard model

2.1.1 Basic proprieties

Table 2.1: Basic properties of muon [53].

Paramter Value

Mass 105.6583745±0.0000024 MeV
Life (2.1969811±0.0000022)×10−6 s

Magnetic moment( gµ−2
2 ) (11659208.9±5.4±3.3)×10−10 s

Electric dipole moment (−0.1±0.9)×10−19 e cm

Muon was found in cosmic rays in 1936 [54]. It has 200 times larger mass than electron,

but the other properties are the same as electron. The discovery of muon was the first clue of

generations of elementary particles. Figure 2.1 summarizes the properties of muons.
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CHAPTER 2. µ+ → e+X, X→ γγDECAY

The standard model interaction of muon is given by

L = eµ̄γµµAµ

− gp
2

(ν̄µLγ
µµLW+

µ + µ̄Lγ
µνµLW−

µ )

−
√

g2 + g′2{
µ̄Lγ

µ(−1
2
+sin2θW )µL + µ̄Rγ

µ sin2θWµR
}
Z0
µ

− mµ

v
µ̄µH.(2.1)

Muon interacts through the electromagnetic (first line in Equation (2.1)) and weak interactions

(second and third lines in Equation (2.1)). It also couples to the Higgs boson (fourth line in

Equation (2.1)).

2.1.2 Decay modes

The decay modes of muon are summarized in Table 2.2.

Table 2.2: Decay modes of muon

Mode Fraction References

µ(−) → e(−)ν(µ)ν̄(e) ∼100 % [53]
µ→ eνν̄γ (1.4±0.4) % [53]
µ→ eνν̄eēe (3.4±0.4)×10−5 [53]

µ(−) → e(−)ν(e)ν̄(µ) < 1.2 %(90% C.L.) [55]
µ→ eγ < 4.2 ×10−13 (90% C.L.) [6]
µ→ eēe < 1.0 ×10−12 (90% C.L.) [56]
µ→ eγγ < 7.2 ×10−11 (90% C.L.) [57]
µN → eN <O (10−12) [58]

µ→ eγX , X → invisible <O (10−9) [57, 59]
µ→ eX , X → invisible <O (10−5) [60]

µ→ eX , X → ee <O (10−11) [61]
µ→ eX , X → γγ <O (10−10) [57, 62]

Michel decay The dominant mode is µ→ eνν̄, which is called the Michel decay. A muon decays

into an e−(+) and two neutrinos without γ emission. It is used as the normalization mode in the

MEx2G analysis. e+ coming from the decay is one of the sources of accidental backgrounds.

The differential decay rate in the standard model is given by ([63])

d2Γ
(
µ± → e±νν̄

)
dxd cosθe

=
m5

µG2
F

192π3 x2[(3−2x) ±Pµ cosθe(2x−1)
]
,(2.2)

where x = 2mµ

m2
µ+m2

e
·Ee; mµ and me are mass of muon and e−(+), respectively; Pµ is polarization of

muon and θe is angle between muon polarization and e−(+) momentum direction. Figure 2.1 shows
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2.1. MUON IN THE STANDARD MODEL

where We!!(m!
2 "me

2)/(2m!), x!Ee /We! , and x0
!me /We!(!9.7#10$3)"x"1. Here Ee is the energy
of the e%, while me and m! are the masses of the e% and
the !%, respectively. The plus (minus) sign in Eq. (30)
corresponds to !"(!$) decay, #e is the angle between
the muon polarization (P! !) and the e% momentum, and
$̂ is the directional vector of the measurement of the e%

spin polarization. Moreover, P! e(x ,#e) is the polarization
vector of the e%. The functions FIS(x) and FAS(x) are,
respectively, the isotropic and anisotropic parts of the
e% energy spectrum. They are given by

FIS%x&!x%1$x&"
2
9

'%4x2$3x$x0
2&"(x0%1$x&,

(31)

FAS%x&!
1
3

)!x2$x0
2! 1$x"

2
3

*+4x$3

"%!1$x0
2$1&," , (32)

where ', (, ), and * are called Michel parameters
(Michel, 1950; Bouchiat and Michel, 1957).

In the SM, these parameters take the values '! 3
4 , (

!0, )!1, and *! 3
4 . If the positron (electron) polariza-

tion is not measured and x0 is neglected, the differential
branching ratio in the SM in Eq. (30) leads to the sim-
pler form of

d2-%!%→e%..̄&

dx d cos #e
!

m!
5 GF

2

192/3 x2+%3$2x&

%P! cos #e%2x$1&,. (33)

Figure 2 shows the e" energy spectrum for !"

→e".e.̄! decay in the SM, for the cases of cos #e!0,
cos #e!"1, and cos #e!$1 with 100% polarized positive

muons. As can be seen, the spectrum is high at x01, and
the sign of the e% asymmetry changes at x!1/2.

If the SM is not assumed, the muon lifetime in Eq.
(23) should be replaced by (Scheck, 1978; Fetscher and
Gerber, 1995; Pich and Silva, 1995)

1!
$1!

GF
2 m!

5

192/3 #F! me
2

m!
2 " "4(

me

m!
G! me

2

m!
2 "

$
32
3 ! '$

3
4 " me

2

m!
2 ! 1$

me
4

m!
4 " $

#! 1"
3
5

m!
2

mW
2 " #1"

2%m!&

2/ ! 25
4

$/2" $ , (34)

where G(x)!1"9x$9x2$x3"6x(1"x)ln x. Radia-
tive corrections based on the SM [in Eq. (23)] are used,
since it can be assumed that the SM contribution domi-
nates in the normal muon decay process. From Eq. (34),
we see that the correction from the ( parameter is pro-
portional to O(me /m!), whereas that from the ' pa-
rameter is very small, being of the order of O(me

2/m!
2 ).

Since the ( parameter is presently measured with an
accuracy of around 1%, the uncertainty from the ( cor-
rection introduces an uncertainty of the order of 10$4 to
the estimation of the muon lifetime in the non-SM case.

If the spin polarization of e"(e$) in the !"

→e".e.̄! (!$→e$.!.̄e) decay is detected, P! e(x ,#e) in
Eq. (30) can be measured. It is given by

P! e%x ,#e&!PT1• %z! #P! !&#z!

%%z! #P! !&#z! %

"PT2• z! #P! !

%z! #P! !%
"PL• z!

%z! %
, (35)

where z! is the direction of the e% momentum, and P! ! is
the muon spin polarization. The terms PL , PT1 , and
PT2 are, respectively, the e% polarization component
parallel to the e% momentum direction, that transverse
to the e% momentum within the decay plane, and that
transverse to the e% momentum and normal to the de-
cay plane. They are given by

PT1%x ,#e&!
P! sin #eFT1%x&

FIS%x&%P! cos #eFAS%x&
, (36)

PT2%x ,#e&!
P! sin #eFT2%x&

FIS%x&%P! cos #eFAS%x&
, (37)

PL%x ,#e&!
%FIP%x&"P! cos #eFAP%x&

FIS%x&%P! cos #eFAS%x&
, (38)

where the % sign corresponds to !% decays, and

FT1%x&!
1
12 & $2#)!"12! '$

3
4 " $%1$x&x0

$3(%x2$x0
2&"(!%$3x2"4x$x0

2&' , (39)

FIG. 2. Michel e" energy spectrum of polarized !"→e".e.̄!

decay with 100% muon polarization (P!!1): (a) cos #e!0; (b)
cos #e!1; and (c) cos #e!$1.
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Figure 2.1: Michel spectrum of fully polarized µ+ → e+νeν̄µ. (a) cosθe = 0, (b) cosθe = +1, (c)
cosθe =−1 (from [63])

the e+ energy spectrum for µ+ → e+νeν̄µ in the standard model, for the cases of cosθe = 0,+1,−1.

Pµ = 1 is assumed in all cases. A radiative correction to Equation (2.2) is given in Ref. [64], which

is used in the analysis.

Radiative muon decay The next to the dominant mode is µ → eνν̄γ, which is called the

radiative muon decay (RMD). RMD emits a γ ray in the final state. Thus this mode is also used

in the analysis for calibration and performance evaluation purposes. A γ ray coming from RMD

is one of the sources of accidental backgrounds. The differential branching ratio is given by ([63])

dB
(
µ± → e±νν̄γ

)
d yd cosθγ

= 1
y

[
J+(y)

(
1±Pµ cosθγ

) +J−(y)
(
1∓Pµ cosθγ

)]
,

where θγ is the angle between muon polarization and γ momentum. y is the normalized γ energy

given by y= 2Eγ/mµ. Terms suppressed by me/mµ are neglected to get Equation (2.3). J+(y) and

7



CHAPTER 2. µ+ → e+X, X→ γγDECAY

2. Radiative muon decay

The spectrum of the radiative muon decay, !!

→e!""̄# , has been calculated by several authors (Ki-
noshita and Sirlin, 1959a; Eckstein and Pratt, 1959;
Fronsdal and Überall, 1959). Within the framework of
the V–A interaction, the differential branching ratio of
the radiative muon decay, where the final positron (elec-
tron) and photon are emitted at energy intervals of dx
and dy with solid angles of d$e and d$# , respectively,
in the muon rest frame, is expressed by

dB%!!→e!""̄#&"
'

64(3 ) dx
dy
y

d$e d$#*F%x ,y ,d&

#)P! !•p̂eG%x ,y ,d&

#P! !•p̂#H%x ,y ,d&+. (49)

Here P! ! is the muon polarization vector; p! e and p! # are
the momenta of the positron (electron) and the photon
in the muon rest frame, respectively; p̂e and p̂# are their
unit vectors defined by p̂e,p! e /!p! e! and p̂#,p! # /!p! #!, re-
spectively; ) is defined as ),!p! e!/Ee ; d is given by d
,1$)p̂e•p̂# ; and x and y are normalized positron
(electron) and photon energies, x"2Ee /m! and y
"2E# /m! in the muon rest frame. From the four-body
kinematics, the allowed ranges of x and y are given by

2!r%x%1&r for 0%y-1$!r ,

%1$y&&r/%1$y&-x-1&r for 1$!r%y-1$r ,
(50)

where r"(me /m!)2. F(x ,y ,d), G(x ,y ,d), and
H(x ,y ,d) in the SM are given in Appendix A.

The decay probability distribution is high for an ener-
getic e! with a soft photon, namely x.1 and y.0. In
the soft-photon limit (y→0), the distribution has an in-
frared singularity which is canceled by the radiative cor-
rection of the Michel decay.

The photon spectrum is obtained by integrating over
the positron (electron) energy and angle variables. By
neglecting the terms suppressed by me /m! , the differ-
ential branching ratio is given by (Kuno et al., 1997)

dB%!!→e!""̄#&

dy d cos /#
"

1
y

*J&%y&%1!P! cos /#&

&J$%y&%1#P! cos /#&+, (51)

where J&(y) and J$(y) are defined by

J&%y&"
'

6(
%1$y&" # 3 ln

1$y
r

$
17
2 $

&# $3 ln
1$y

r
&7 $ %1$y&

&# 2 ln
1$y

r
$

13
3 $ %1$y&2% , (52)

J$%y&"
'

6(
%1$y&2" # 3 ln

1$y
r

$
93
12$

&# $4 ln
1$y

r
&

29
3 $ %1$y&

&# 2 ln
1$y

r
$

55
12$ %1$y&2% , (53)

and /# is the angle between the muon spin polarization
and the photon momentum. The photon spectrum for
unpolarized muons is shown in Fig. 3. Note that at the
maximum photon energy (y01), the photon distribu-
tion is approximately given by (1&P! cos /#) for the
!&→e&"e"̄!# decay, because J&(y) has a first-order
term in (1$y), but J$(y) only contains the second- and
higher-order terms. This fact is important for the sup-
pression of accidental background in a !&→e&# search
using polarized muons, as mentioned in Sec. V.A.5.

In generalized interactions, the differential branching
ratio of !!→e!""̄# decay has been calculated (Lenard,
1953; Behrends et al., 1956; Fronsdal and Überall, 1959).
Here, the spectra of e! and a photon depend not only
on the Michel parameters of 1 and 2 in the standard
muon decay, but also on an additional parameter, 3̄ ,
which should be zero in the V–A interaction of the SM.
Moreover, the asymmetry of e! in !!→e!""̄# from
polarized muons is parametrized by another parameter,
4•5 (Fetscher and Gerber, 1995). Measurements of
these parameters would give additional constraints on
the four-fermion coupling constants (Eichenberger et al.,
1984). Time-reversal violation in radiative muon decay
has also been discussed (Pratt, 1958), but it was con-
cluded that the T-odd effects have to include either the
e! polarization or those terms suppressed by the elec-
tron mass.

FIG. 3. Differential branching ratio of the !!→e!""̄# decay
as a function of the photon energy (y,2E# /m!). This
branching ratio is obtained by integrating over the e& energy
and the angle between an e& and a photon.

160 Y. Kuno and Y. Okada: Muon decay and physics beyond the standard model
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Figure 2.2: Differential branching ratio of RMD (from [63])

J−(y) are defined by

J+(y) = α

6π
(1− y)

[(
3ln

1− y
r

− 17
2

)
+

(
−3ln

1− y
r

+7
)
(1− y) +

(
2ln

1− y
r

− 13
3

)
(1− y)2

]
,

J−(y) = α

6π
(1− y)2

[(
3ln

1− y
r

− 93
12

)
+

(
−4ln

1− y
r

+ 29
3

)
(1− y) +

(
2ln

1− y
r

− 55
12

)
(1− y)2

]
,

where r = (me/mµ)2. Figure 2.2 shows the γ spectrum for unpolarized muons.

Non-standard decay modes Decay modes except for the first three modes listed in Table 2.2

are not predicted from the standard model. Current upper limits are also listed. Any observation

of these modes indicates new physics. In particular, the MEG collaboration gives the stringent

limits on µ→ eγ and µ→ eX , X → γγ. The latter one, the MEx2G decay, is the main topic of this

thesis.
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2.2. DECAY RATE

2.2 Decay rate

A full effective field theory description of µ+ → e+X, X→ γγ assuming X to be axion-like particles

can be found in Refs. [40, 65]. In the on-shell regime, the branching ratio of µ+ → e+X, X→ γγ can

be obtained using the narrow-width approximation:

B(µ+ → e+X,X→ γγ)≈B(µ+ → e+X)×B(X→ γγ).

The effective Lagrangian of X→ γγ is given by:

L ⊃− gγγ
4

X FµνF̃µν,

where gγγ is the coupling constant of X→ γγ vertex. It contains a loop contribution and has the

inverse of the cut-off scale of the effective Lagrangian. Then the decay width Γ is given by

Γ(X → γγ)=
g2
γγm3

X

64π
.

The boosted decay length of X in the lab frame is given by

l = c|PX|
mXΓ

.(2.3)

Assuming the dominant decay mode of X to be X→ γγ like electrophobic models proposed in Refs.

[66, 67], the lifetime of X is given by τ= 1/Γ.

2.3 Experimental searches

Current constraints of the MEx2G decay are classified into three types: direct search, constraints

from related modes, and constraints from parameter space of X.

2.3.1 MEG2012

The MEx2G direct search requires experimental features in common with the µ+ → e+γ search,

and hence, the µ+ → e+γ search experiments, like MEG, are suitable for this search. As will

be reviewed in Chapter 3, the MEG experiment utilizes the world’s highest muon beam and

high-performance gamma and positron detectors. Therefore, it is a unique experiment enabling

the best search of this decay to date. The MEx2G direct search was actually performed, for the

first time, by the MEG collaboration using the datasets taken in 2009 and 2010. No significant

excess was found and upper limits on the branching ratio for the mass range of 10–45 MeV and

lifetime equal or less than 10 ns were set. The upper limits for a mass range below ∼30 MeV have

been significantly updated. The results are summarized in a Ph.D. thesis published in 2012 [62].

9



CHAPTER 2. µ+ → e+X, X→ γγDECAY

Figure 2.3: Upper limits estimated from the Crystal Box experiment (blank markers with solid
lines) and the previous MEx2G search. Marker colors correspond to lifetime of the mediated
particle (from [62]).

2.3.2 The Crystal Box experiment

The Crystal Box experiment [57] searched for the lepton-flavor-violating muon decays: µ→ eγ,µ→
eγγ,µ→ eee. Among them, µ→ eγγ, whose most stringent upper limit is given by this experiment,

is relevant to the constraint on the MEx2G decay. This upper limit can be converted into the

MEx2G equivalent upper limit taking the difference of the detector acceptance into account. The

detailed calculation is found in Ref. [62]. In this calculation, relative differences of geometrical

acceptance for both decays (µ→ eγγ and µ→ eX, X→ γγ) are multiplied by the obtained upper

limit for µ→ eγγ (7.2×10−11). The converted limits are shown in Figure 2.3 as the solid lines.

2.3.3 Constraints from other modes

As listed in Table 2.2, upper limit of µ→ eX , X → invisible mode is O (10−5) in mass range of

13–80 MeV [60]. This level gives no constraints on the MEx2G decay considering the current

upper limit of the decay. In the future, the Mu3e experiment has a possibility to push the upper

limit down to 5×10−9 [68], which is comparable to the current upper limit of the MEx2G decay in

the higher mass region.

µ→ eX , X → ee can give a more stringent constraint on the MEx2G decay than its direct

search if we assume X is more likely to decay into e+e− pairs. However, there is a possibility for X

to be electrophobic as suggested in Refs. [66, 67] and searches for both decay modes give a hint to

10



2.3. EXPERIMENTAL SEARCHES

Figure 2.4: Excluded parameter regions for a scalar X with mass and coupling to γs from collider,
beam dumps, and supernova (from [69]). Only geµ and gγγ are assumed to be non-zero. The black
lines corresponds to the boosted decay length of X; the solid one is 0.01 cm; the dotted one is
0.1 cm; the dashed one is 1 cm; the dot-dashed one is 10 cm. The region with decay length < 1 cm
and mX >20 MeV have room for the MEx2G search[69].

determine the model behind these decay modes.

2.3.4 Constraints from other experiments

In axion-like particles’ search, collider, beam dumps, and supernova observation give constraints

on X→ γγ if the axion-like particles are generated from coupling with γ. Figure 2.4 summarizes

the excluded parameter region by these experiments. A part of parameter space for the MEx2G

decay is excluded by lepton collider experiments and beam dump experiments. The region with

decay length < 1 cm and mX >20 MeV have room for the MEx2G search.

2.3.5 Target parameter space in this analysis

We define the target parameter space in τ–mX surface as shown in Figure 2.5. τ is the lifetime of

the mediated particle X. mX is the mass of X. The decay length is converted into the lifetime of

X(τ) by using Equation (2.3) and the subsequent assumption, which gives:

l(= cβγτ)< 1(cm) ⇔ τ< mX

cPX
·1(cm),(2.4)

where PX is the momentum of X. The blue region has already been excluded and the red region

(> mµ/2) cannot be searched from the two body decay of muon. Therefore we focus on the following

parameter space:

mX = (20,25,30,35,40,45)MeV

11
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Figure 2.5: Allowed parameter space. We focus on the white region in this analysis.

τ= (5,20,40)ps.

2.4 Kinematics

In this section, we calculate the kinematical dependence of output particles, particularly on 2γs.

In the muon’s rest frame, four momentum of µ→ eX is written as(
Eµ

0

)
=

(
Ee

~Pe

)
+

(
EX
~PX

)
,(2.5)

where Eµ,Ee,EX are energy of µ, e, X, respectively. ~Pe is momentum of e and ~PX is momentum of X.
~Pe+~PX = 0 folds by momentum conservation in the µ’s rest frame. Thus we define Pe = |~Pe| = |~PX|.
Equation (2.5) can be rewritten as(

mµ

0

)
=

 √
m2

e +P2
e

~Pe

+
 √

m2
X +P2

e

−~Pe

 ,

where Eµ = mµ is used. By energy conservation, one can get

mµ =
√

m2
e +P2

e +
√

m2
X +P2

e .

Therefore, Pe can be written as a function of masses:

P = Pe = PX = |~Pe| = |~P×|

=
√(

m2
µ+m2

e −m2
X

)2 −4m2
µm2

e

2mµ
.
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X
θrest

θrest

X rest frame Lab. frame

ϕrest

X
θrest

θrest

X
θrest

θrest

XX
θ1

γ1

γ2

X

θ2

γ1

γ2

boosting

Figure 2.6: The µ+ → e+X, X→ γγdecay topology.

Hereafter, we calculate X → γγ kinematics. As shown in Figure 2.6, 2γs are emitted in the

opposite direction each other in the X rest frame. The X-boosted frame, i.e. the lab. frame is

shown on the right-hand side of the figure. We define the boosted direction as the x-axis. The

y-axis is defined so that 2γs are decays into an x-y-surface. An emitted angle of γ from the x axis

and a rotation angle around x axis are defined as θres and φres, respectively. θres is restricted from

0 to π/2 by defining the forward γ as γ1 shown in Figure 2.6. φres can take the full range (0 to 2π).

The boosting parameters, β,γ are

β = PX√
m2

X +P2
X

,(2.6)

γ = 1√
1−β2

=
√

m2
X +P2

X

mX
.(2.7)

mX dependence of PX,β,γ, sum of 2γs’ energy (Eγ1 +Eγ2) are shown in Figure 2.7.

The relation of four momentum in the X rest frame is(
EX

0

)
=

(
E1

~P1

)
+

(
E2

~P2

)
.

By momentum conservation and mγ = 0, √
m2

X +02

0

=
 √

m2
γ+ p2

~p

+
 √

m2
γ+ p2

−~p

 .

Thus, (
mX

0

)
=

(
p
~p

)
+

(
p

−~p

)
.

By energy conservation,

p = mX

2
.
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Figure 2.7: mX dependence of PX(= Pe),β,γ,Eγ1 +Eγ2. The target parameter space is shown in
shadow.

Hereafter we calculate mX dependence of each γ. Four momenta of 2γs are rewritten as


p

px

py

pz

 ,


p

−px

−py

−pz

 .

By definition, pz = 0 and px, py are function of θrest.
p

pcosθrest

psinθrest

0

 ,


p

−pcosθrest

−psinθrest

0

 .
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The Lorentz transformation matrix is
γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

 ,

where the lab frame is moving to the −X direction with a speed of β. Thus the four momenta of

γs are transformed to 
p

pcosθrest

psinθrest

0

 7→


γp+βγpcosθrest

βγp+γpcosθrest

psinθrest

0




p

−pcosθrest

−psinθrest

0

 7→


γp−βγpcosθrest

βγp−γpcosθrest

−psinθrest

0

 .

Therefore, energy of each γ is

E1 = γp+βγpcosθrest

= γ
mX

2
+βγ

mX

2
cosθrest,(2.8)

E2 = γp−βγpcosθrest

= γ
mX

2
−βγ

mX

2
cosθrest.(2.9)

The opening angles θ1,2 in the lab. frame are calculated as follows:
E1

E1 cosθ1

E1 sinθ1

0

 =


γp+βγpcosθrest

βγp+γpcosθrest

psinθrest

0

 ,


E2

E2 cosθ2

E2 sinθ2

0

 =


γp−βγpcosθrest

βγp−γpcosθrest

−psinθrest

0

 .

Therefore,

cosθ1 = P2
X + (

E2
1 −E2

2
)

2E1PX
,(2.10)

cosθ2 = P2
X − (

E2
1 −E2

2
)

2E2PX
,(2.11)
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where the following relations are used:

βγ = PX

mX
,

E1 +E2 = 2γp =
√

m2
X +P2

X,

E1 −E2 = 2βγpcosθrest = PX cosθrest.

mX and angle dependence are shown in Figure 2.8. When θrest is close to 90◦, 2γs are

orthogonal to the boosted direction and the energy difference becomes small. The difference

between θ1 and θ2, emission angles in the lab frame, also becomes small. When θrest is close to

0◦, on the other hand, one γ is the same direction of the boosted direction and the other is the

opposite, resulting in the energy difference becomes large. For larger mX, more γs are emitted in

the opposite direction of the boosted direction in the larger θrest and the opening angle becomes

larger, resulting in the less acceptance and less trigger efficiency (Section 3.5.2) for the MEx2G

signal.
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Figure 2.8: (a) Eγ as a function of cosθrest. Solid line: γ1, dashed line: γ2 (b) θ1(solid line, γ1),
θ2(dashed line, γ2) as a function of θrest. (c) Opening angle as a function of θrest.
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2.5 Backgrounds

Possible backgrounds are classified into four types as listed in Table 2.3. The symbols (©,4,♦)

indicate origins and the same one has the same physics origin. The first three types are accidental

backgrounds and the last one is a physics background. There are two candidates of the physics

backgrounds: µ → eγγνν, which we call doubly radiative muon decay (DRMD) and a RMD

(µ+ → e+γνν̄ ) associated background.

DRMD has one additional γ emission to RMD. DRMD was not considered seriously in the

previous studies [62]. This mode has not yet been measured but it exists in the standard model

framework. The partial branching ratio at tree level is calculated to be ∼O (10−15) by A. Signer and

Y. Ulrich1, which is negligible in our analysis. The other one is an RMD associated background.

In an RMD event with e+ energetic enough to trigger and a γ of large energy, the γ can convert

into an e+e− pair before entering the γ calorimeter and both e+ and e− can reach the calorimeter

mimicking two γs. Its probability is estimated to be ∼O (10−15) taking the RMD branching ratio

and a probability for γ to convert into an e+e− pair before entering the calorimeter into account.

This is also negligible.

Other accidental backgrounds (type1, 2, and 3) need to be considered in the analysis. In type1,

e+ and one of γ come from the same RMD event. The other γ comes from another RMD event or

one of annihilation-in-flight (AIF, e+(+e−) → γγ) γ or bremsstrahlung of accidental e+. In type2,

e+ comes from the Michel decay, and 2γ come from the same physics processes: the first process is

AIF 2γ. In the second process, one γ comes from a RMD event and the other γ comes from AIF or

bremsstrahlung from the RMD e+. In type3, e+ comes from the Michel decay and 2γ come from

different physics processes. As we discuss in Section 7.2, the numbers of these background events

are estimated using predefined off-timing sideband regions.

Table 2.3: Background types in the MEx2G analysis. See texts for the detailed description of each
background source.

type e+ γ1 γ2 possible sources

1 © © 4 ©: RMD
4: RMD, AIF, brems.

2 © 4 4 ©: Michel
4: AIF 2γ/ RMD, AIF or brems. from accidental e+

3 © 4 ♦ ©: Michel
4, ♦: RMD, AIF, or brems.

4 © © © Doubly radiative muon decay, RMD accociated BG

1A related talk can be found in Ref. [70]. They calculated NLO of RMD [71]. In this calculation, the tree level of
DRMD is included. This NLO contribution is negative and the branching ratio becomes a further smaller value.
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EXPERIMENTAL APPARATUS

In this chapter, the experimental apparatus for the MEx2G search is introduced. We use

data taken with the MEG detector. Thus we first overview the MEG experiment. Then the

experimental apparatus of the MEG experiment related to the MEx2G search is presented.

Finally, the analysis strategy for the MEx2G search with the MEG datasets is summarized.

3.1 Overview of the MEG experiment

The MEG experiment searched for the lepton flavor violating decay of muon, µ+ → e+γ , with an

unprecedented sensitivity ever. In the standard model, this decay is not allowed to occur and the

branching ratio calculated from the standard model extended with neutrino oscillation is very

tiny (O (10−55) [72]). However, physics models beyond the standard model such as supersymmetric

models and extra-dimensional models predict larger branching ratios (O (10−12)−O (10−14)), which

are experimentally accessible. To suppress background events and detect signal events, the

following three points are required:

• Beam: high intensity and continuous muon beam.

• Gamma-ray detector: good time, energy, and position resolutions.

• Positron detector: operational under a high rate environment.

To get the required beam, the 2.2-mA proton cyclotron at Paul Scherrer Insititut (PSI) in Switzer-

land was used. We have developed a dedicated detector to meet the requirements above, the MEG

detector [73]. Figure 3.1 shows a schematic view of the MEG detector. A muon beam comes from

the left-hand side and stops at the stopping target placed at the center of the detector. An e+

and a γ from a µ+ → e+γ signal are emitted back-to-back from the target. The e+ shown in the
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z

x

x

y

FIGURE 3.1. The MEG detector.

red curve in Figure 3.1 follows a helical trajectory inside the detector under a magnetic field

produced by the COBRA magnet. Drift chamber (DCH) and timing counter (TC) detect the e+.

The γ shown in blue broken line goes into Liquid Xenon Scintillation Detector (LXe).

Figure 3.2 shows the µ+ → e+X, X→ γγ signal (MC) with the MEG detector. The e+ shown in

the blue curve in Figure 3.2 follows a helical trajectory like the µ+ → e+γ signal. The mediated

particle, X is not shown in the figure, but it decays into 2γs shown in yellow line.

We define a cylindrical coordinate (r, φ,θ). The origin is set to the center position of the

COBRA magnet and the z-axis is defined along the beam direction. The direction of φ = 0 is

defined as the opposite of the center of LXe. In the corresponding Cartesian coordinate, the x-axis

points to the opposite to the center of LXe while the y-axis points to the upwards of the detectors.

The angular acceptance is defined by LXe acceptance, which corresponds to φ between 2
3π

and 4
3π and |cosθ| < 0.35. Total acceptance is ∼11%. The e+ detector is designed to accept e+ (52.8

MeV) from µ+ → e+γwhen γ (52.8 MeV) from µ+ → e+γ is in the LXe acceptance. An e+ from the

MEx2G decay, however, has lower energy than 52.8 MeV depending on the mass of X, resulting

in less acceptance because the TC position is optimized to detect energetic e+(See Section 7.6.4).

The MEG data-taking started in 2008 and finished in 2013. No evidence of the decay was

found, leading to a new upper limit on the branching ratio of 4.2×10−13(90%C.L.) in 2016 [6].

From the next section, each apparatus used in the MEG experiment is reviewed.
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X vertex

µ vertex
LXe

TC

µ vertex

LXe
X vertex

FIGURE 3.2. An example of the MEx2G signal event (MC).
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FIGURE 3.3. πE5 beamline.

3.2 The muon beam

PSI provides the highest intensity continuous muon beam in the world. A continuous beam is

required to suppress the number of accidental background events, which is proportional to a

square of the beam rate. The proton cyclotron of PSI provides a 590 MeV proton beam with a

current of 2.2–2.4 mA, 1.4 MW. The beam structure is originally pulsed (RF: 50.7 MHz). In the

MEG dedicated beamline, µ+ beam with beam rate of 3×108µ+/s at 28 MeV/c in a momentum

bite of 5–7% is available, but we reduced the beam rate down to 3×107µ+/s for stable detector

operation. We will make the most of its capability in the MEG II experiment [7].

3.2.1 πE5 Channel

The proton beam passes through one of the pion production targets, Target E, where the beam

energy is reduced to 570 MeV. The target is made of 4 cm long graphite. 70% of the beam is

recaptured. µ+s are produced at this target and guided to the MEG experimental area called

the πE5 channel. Figure 3.3 shows a schematic view of πE5 channel. We use µ+ not µ− to avoid

forming muonic atoms at the stopping target. As shown in the leftmost part of Figure 3.3, the

muon beam is extracted with a slant angle of 165◦ from the original proton beam direction. This,

so-called a surface muon beam [74], is produced through π+ →µ+νµ from pions stopped at the

surface of Target E. The extracted muon beam is fully polarized (Pµ+ =−1) and it is depolarized

down to Pµ+ =−0.86±0.02(stat)+0.05
−0.06(sys) [75] before it reaches the stopping target. The beam

can be assumed to be continuous owing to the long lifetime of muon (∼ 2µs).

Quadrupole and sextupole magnets are used to guide the beam to the MEG experimental area

(the right half of Figure 3.3 after a shielding wall made of concrete). There exist 10 times larger

e+s than µ+s just after the shielding wall. We remove these e+s using a Wien-filter ("Separator"),
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3.2. THE MUON BEAM

FIGURE 3.4. The stopping target. Markers and holes on the target are used to measure
the shape and the position of the target.

quadrupole magnets (Triplet II), and a collimator made of lead. A separation power of 8.1 σµ

from the beam originated e+s is achieved after these systems. Finally, the superconducting Beam

Transport Solenoid (BTS) is used to couple the beamline to the MEG detector. To directly couple

to the beamline, the inside of the BTS is evacuated. A 300 µm thick Mylar® degrader is placed

at the center of BTS to reduce the muon momentum to the low level at which the muon beam

stops at the target. A 0.36 T magnetic field is applied for focusing. Gaussian beam-spot profile at

the target has σx,y ∼ 10 mm.

π− beam is also available in this beamline and it is used for calibration as explained in

Section 3.6. The π− beam is tuned at 70.5 MeV/c to produce high energy γs through the charge

exchange reaction.

3.2.2 Stopping target

The stopping target shown in Figure 3.4 (before installation) and in Figure 3.5 (after installation).

It is made of a 205 µm thick polyethylene and polyester sheet (density: 0.895 g/cm3). It has an

elliptical shape with semi-major and semi-minor axes of 10 cm and 4 cm, respectively. It is placed

on the beam axis at a slanted angle of 20◦ with respect to the beam direction. This geometry

enables us to have a long length for incoming muons (to stop more than 80 % of them) and a short

length for outgoing particles (to reduce multiple scattering and sources of background) at the

same time.

23



CHAPTER 3. EXPERIMENTAL APPARATUS

FIGURE 3.5. Stopping target and Drift chamber after installation.
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3.3. POSITRON SPECTROMETER

(a)

(b)

μ+
e+

μ+
e+

FIGURE 3.6. Cross sectional view of the COBRA magnet. See texts in detail.

3.3 Positron spectrometer

The MEG positron spectrometer consists of three components: COBRA magnet, Drift Chamber,

and Timing Counter.

3.3.1 COBRA magnet

COBRA [76] stands for COnstant Bending RAdius. It is made of a superconducting magnet with

3 different radii. It generates a gradient magnetic field of 1.27 T at the center and 0.49 T at both

edges. The characteristics are schematically shown in Figure 3.6. e+s emitted from the target

follow helical trajectories under the magnetic field. The diameters of the trajectories depend on

e+ momenta independent of their emission angles thanks to the gradient field (Figure 3.6(a)).

This means that we can select e+s with a specific momentum range by placing detectors in a
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specific radius range; e+s whose momenta are more than ∼45 MeV come into the acceptance

region of timing counter.

Furthermore, the gradient field prevents e+s emitted to directions orthogonal to the beam

direction from staying inside the spectrometer. This results in the suppression of hit rates at the

detector.

The thickness of the center part of COBRA is 0.2 radiation length to minimize the effect on

γ. 85% of the signal γs penetrate COBRA and reach the γ detector. Since the performance of

photomultiplier tubes (PMT) deteriorates under a magnetic field, a compensation coil for COBRA

is placed outside the detector, resulting in a reduction of the leak magnetic field around the LXe

detector down to 50 Gauss.

3.3.2 Drift Chamber

Drift CHamber (DCH) [77] is designed to track e+s. DCH is composed of 16 independent modules

as shown in Figure 3.5. Each module has a trapezoid shape with base lengths of 40 cm (larger

radius) and 104 cm (smaller radius, close to the stopping target). The directions of base lengths

are parallel with the beam direction. These modules are installed along the bottom half of the

circle at 10.5◦ interval. DCH covers the azimuthal region between 191.25◦ and 348.75◦ and

the radial region between 19.3 cm and 27.9 cm. It has a two-layered structure and wires in

each layer are stretched in the axial direction (beam direction). As shown in Figure 3.7 (a), the

distance between adjacent cells is 9 mm and these cells are staggered among layers. Thanks to

these moduled structures and the gradient magnetic field, DCH is operational under a high rate

environment. The e+ hit rate at the most inner part is suppressed down to 10 kHz while the

original muon beam rate is 30 MHz. DCH is composed of low mass materials and helium-based

chamber gas (He: C2H2 = 1: 1) is used to suppress multiple scattering. 2.0×10−3 radiation length

is achieved for the µ+ → e+γ signal e+ (52.8 MeV).

As mentioned above, wires are stretched along the beam direction and position resolution

along the beam axis is not good. To get a better position resolution along the beam axis, vernier

pads are placed in each module. Figure 3.7 (b) shows how the pad works. The vernier pad has

periodic structures and the charge ratio between cathode readouts depends on hit position inside

the single periodic structure. Anode readout determines in which period the hit exists and vernier

readouts determine in which position inside the period the hit exists.

3.3.3 Timing Counter

Timing Counter (TC) [78, 79] is designed to precisely measure the e+ hit time. Figure 3.8 shows

a schematic view of TC. It consists of two parts: scintillation bars and scintillation fibers. 15

scintillation bars are placed outside the scintillation fibers at each side of the stopping target. The

scintillation bars are made of 4×4×80 cm3 plastic scintillator (Bicron BC404) and PMTs attached

to both edges of the bars. Since the detector is placed in the high magnetic field, fine-mesh
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a	


b	


FIGURE 3.7. (a) Cross sectional view of the DCH module. (b) Schematic view of the
varnier pad method. See text in detail.

(a) (b)

Figure 3.8: (a) Schematic view and (b) picture of TC. Scintillation fibers are not installed in the
picture.

2” PMTs are used. The scintillation fibers readout by avalanche photodiodes were originally

developed to get independent position information and improve time resolution, but they did not

work in the experiment. TC is covered with a N2 bag to prevent chamber gas (He) from entering

TC PMTs.
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(a) (b)

Figure 3.9: (a) Outer and (b) inner view of LXe

3.4 Liquid Xenon gamma calorimeter

Liquid Xenon gamma calorimeter (LXe) [80, 81] is designed to detect γ using liquid xenon (active

volume 800 L) and the scintillation light are readout by 846 PMTs. Outer and inner views of LXe

are shown in Figure 3.9. The interaction position and time inside LXe are reconstructed from the

light distribution detected with the PMTs. The energy is reconstructed by summing up all the

scintillation light detected with the PMTs. Liquid xenon is selected as a scintillation medium

from the following reasons: LXe is operational under a high rate environment thanks to its fast

time response (decay time: 45 ns). This also contributes to a good time resolution. The radiation

length of liquid xenon is short (2.8 cm) enough to stop γ inside the active volume. Light yield is

also large (75% of NaI). Furthermore, liquid scintillator has advantages over a solid one in terms

of uniformity and purity. Liquid scintillators can be purified if needed. These characteristics

contribute to a good energy resolution.

Problems to use liquid xenon are the wavelength of the scintillation and low-temperature

operation. The wavelength of scintillation light from liquid xenon (∼178 nm) is in the region

of Vacuum Ultra-Violet (VUV), which is a shorter wavelength than that can be detected with

usual PMTs. To keep xenon in the liquid phase, the detector should be operated under ∼165

K. The VUV-sensitive and low-temperature-operational PMT (R9869) was newly developed in

cooperation with Hamamatsu Photonics K.K.

γ interacts with xenon atoms through three different processes: scattering, photoelectric

absorption, and pair production. The pair production is the dominant process for γ around
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MeV scale in LXe [82] and it makes electromagnetic shower in LXe. During the process, excited

atoms (Xe∗) or ions (Xe+) are produced. Then, the scintillation mechanism has two different

processes [83, 84]: The first process is called a self-trapping process and it is given by

Xe∗+Xe+Xe→Xe∗2 +Xe,

Xe∗2 → 2Xe+hν,(3.1)

where Xe∗2 is called excimer, excited state of molecule, and hν is a VUV photon. These photons

are emitted from the excimer. The excimer has two molecular states, singlet and triplet, which

have shorter (4.2 ns [85]) and longer (22 ns [85]) decay times, respectively.

The second process is called a recombination process and it is given by

Xe++Xe→Xe+2 ,

Xe+2 +e− →Xe∗∗+Xe,

Xe∗∗ →Xe∗+heat,

Xe∗+Xe+Xe→Xe∗2 +Xe,

Xe∗2 → 2Xe+hν.(3.2)

This process is slower (45 ns [85]) than the first one. In both cases, scintillation photons are

emitted from the excited dimers at the same process (Equation (3.1) and Equation (3.2)), not from

the excited atom itself. Owing to this characteristic, the scintillation photons are not absorbed by

Xe itself.

Figure 3.10 shows a schematic view of the LXe detector. It has a C-shaped structure and

distance between the center of stopping target and the inner surface of LXe is 67.85 cm. The

depth of LXe is 38.5 cm, which corresponds to ∼14 radiation length. Green markers in Figure 3.10

show PMTs. These PMTs are directly put in the liquid xenon. They are placed in six faces as

shown in the development view of the detector in Figure 3.11.
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FIGURE 3.10. Schematic view of the LXe detector.

3.2. Detector 39

γ

67.85cm

Inner face

Top face
Liquid xenon

Level meter

PMT

Outer face

1 m

Bottom face

Stopping target

125.5 deg.

γ

Upstream face

Outer face

Stopping target

Inner face

Downstream

1 m

(a) Side view. (b) Top view.

Figure 3.24: Schematic view of LXe gamma-ray detector.
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Figure 3.25: Development view of LXe gamma-ray detector. The local coordinate
system of the detector is also shown as red arrows. Each light blue circle shows a PMT.

FIGURE 3.11. Development view of the LXe detector (from [86]).
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3.5 DAQ and Trigger

3.5.1 Front-end electronics

One of the distinctive features of the MEG experiment is to record all the waveforms from the

detectors. We used Domino Ring Sampler v4 (DRS4) chip [87] for digitizing and recording of the

waveforms. It enables us to apply complicated algorithms to the acquired data and it makes it

easy to reanalyze the data when we change algorithms or parameters. The sampling frequencies

are set to 1.6 GHz for TC and LXe and 0.8 GHz for DCH. This lower frequency value for DCH is

determined to match the drift velocity.

3.5.2 Trigger

The trigger rate should be kept below 10 Hz in order not to lose events. Table 3.1 shows a list

of the most important triggers in the MEG experiment. Note that the dedicated trigger for

the µ+ → e+X, X → γγ events was not prepared. Thus we use µ+ → e+γ triggered data in the

µ+ → e+X, X→ γγ search analysis (Section 3.9). We developed 2 different types of triggers. One

is used in physics data taking and the other is used in calibration data taking. In the physics

data taking, several triggers are mixed with their own prescaling factors. The main trigger is

the MEG trigger, which is shown in the first line of Table 3.1 with a prescaling of 1. The trigger

names starting with MEG uses the following observables:

• γ energy

• Time difference between e+ and γ

• Relative direction of e+ and γ

A total charge of PMTs in the LXe detector is used to select high energy γ events. An e+ time is

calculated from TC. The time difference is used to select coincident events. The relative direction

is used to select back-to-back events, which is called direction matching (DM) trigger. To calculate

the relative direction, the PMT that has the largest amount of scintillation photons is used at the

γ side assuming the emission point locates at the center of the target. Since DCH information is

too slow to be used in the trigger, an e+ hit position at TC is used making use of the fact that TC

bar IDs and z position correlate with the e+ emission angle. As we discuss in Section 7.6.6, this

DM trigger loses the MEx2G signal. Unlike the µ+ → e+γanalysis, the MEx2G signal has 2γs

with a finite opening angle and this makes the signal unlikely to be back-to-back events. This

µ+ → e+γdedicated trigger loses 10%–50% of the MEx2G signal events depending on the mass of

the mediated particle.
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Table 3.1: The most important triggers in the MEG experiment

name Prescaling factor Selection criteria
MEG 1 Eγ > 45MeV∧|∆teγ| < 10ns∧narrow DM

MEG Low Eγ 50 Eγ > 40MeV∧|∆teγ| < 10ns∧narrow DM
MEG Wide Wide DM 500 Eγ > 45MeV∧|∆teγ| < 10ns∧wide DM

MEG Wide |∆teγ| 200 Eγ > 45MeV∧|∆teγ| < 20ns∧narrow DM
Radiative decay 1000 Eγ > 45MeV∧|∆teγ| < 10ns

LXe alone - Threshold on Eγ

DCH alone 107 DCH hit multiplicity
TC alone 107 TC hit multiplicity
π0 decay - Coincidence between LXe and NAI/BGO
Pedestal 20000 Clock for pedestal

Online efficiency
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FIGURE 3.12. DAQ efficiency during different run periods. First part corresponds to
runs in 2009, 2010 and second part corresponds to runs in 2011–2013 (from [6]).

3.5.3 DAQ

DAQ systems should have long live time and high online efficiency as much as possible. DAQ

efficiency is defined as the product of these two items. Figure 3.12 shows a contour plot of the

DAQ efficiency. A multiple-buffer scheme to efficiently retain waveforms was implemented in

2011 and the DAQ efficiency was improved from 75% to 97%.
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3.6 Calibration tools

Calibration tools in the MEG experiment are summarized in Table 3.2. Processes in bold font

are explicitly used in this analyais. In this section, we focus on the Cockcroft-Walton accelerator

and charge exchange reaction. Other calibration tools are mentioned in this thesis as necessary.

Detailed descriptions of all the calibration tools can be found in Ref. [73].
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(a) (b)

Figure 3.13: (a) Schematic layout of CW area and πE5 area, (b) CW beamline inside πE5 area.
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Figure 3.14: CW spectrum [73]

3.6.1 The Cockcroft-Walton accelerator

A dedicated Cockcroft–Walton (CW) accelerator [88] is installed next to the πE5 area as shown in

Figure 3.13 (a). Nuclear reactions excited by protons from CW are used to calibrate and monitor

LXe energy scale and relative timing between LXe and TC.

Two nuclear reactions are used. 7
3Li(p,γ)84Be produces 17.6 MeV and 14.6 MeV γ. The higher

one is monochromatic and the lower one has broader resonance. 5
11B(p,γ)12

6 C produces 11.7 MeV

and 4.4 MeV γ. These two γs are emitted simultaneously. Thus they are used not only for energy
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CHAPTER 3. EXPERIMENTAL APPARATUS

calibration but also for time calibration between different detectors: LXe and TC.

A lithium tetraborate (Li2B407) target is installed to excite both reactions. A proton current

is tuned at the threshold where each reaction occurs. An Eγ low threshold trigger is used for
7
3Li(p,γ)8

4Be events and a time coincidence (LXe and TC) trigger is used for 11
5 B(p,γ)12

6 C events.

Figure 3.14 shows measured γ energy spectra by the CW calibration.

3.6.2 The π−p charge exchange reaction

We use the Charge EXchange (CEX) reaction π−+p→π0 +n to calibrate the LXe detector. The

following performances were evaluated with the CEX calibration:

• Determination of the energy scale

• γ energy resolution

• γ time resolution

• γ position resolution

• γ efficiency

A π− beam instead of µ+ beam is injected into a dedicated target for the CEX calibration, a

liquid-hydrogen (LH2) target instead of the µ+ stopping target. The LH2 is used because of its

higher proton density1. The π− captured by protons inside the LH2 target reacts in two different

ways: one is the charge exchange reaction (CEX), π−+p→π0+n followed by π0 → γ+γ. The other

is the radiative capture reaction (RC), π−+ p → n+γ. The relative probability (Panofsky ratio)

between these reactions was measured to be

P = Γ
(
π−+ p →π0 +n

)
Γ

(
π−+ p → n+γ

) = 1.546±0.009(3.3)

in Ref. [90]. The energy of γ in the RC reaction is ∼129 MeV, which is higher than our use and

the γs in CEX reaction are mainly used for the LXe calibration. 2γs from the π0 are emitted

back-to-back and have the energy of ∼ 67.5 MeV at the rest frame:

Erest
γ = mπ0

2
' 67.5MeV.(3.4)

In the lab frame, the γs have

Eγ1,2 = γ
mπ0

2
(
1±βcosθrest) ,(3.5)

where β is the π0 velocity (β' 0.2). The energy depends on its emission angle θrest in the rest

frame. Therefore, 2γs from the CEX reaction have energy from Emin to Emax:

Emin = γ
mπ0

2
(1−β)' 54.9MeV,(3.6)

Emax = γ
mπ0

2
(1+β)' 82.9MeV.(3.7)

1Detailed considerations on the CEX target can be found in Ref. [89]
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NAI/BGO detector u direction

v direction

Mover

Figure 3.15: NAI/BGO mover placed at the opposite side of the LXe detector.

The nearly monochromatic γ energies of 54.9 MeV and 82.9 MeV are available by selecting

back-to-back events. For this purpose, a NAI (in 2009 and 2010) or BGO (in 2011 – 2013)

calorimeter was installed at the opposite side of the LXe detector when the CEX calibration was

performed. The calorimeter is mounted on a moving stage shown in Figure 3.15. The detector can

move in the u and v directions defined in Figure 3.15 to take back-to-back events. Figure 3.16

shows correlation of reconstructed energy between the LXe and BGO detector. One can get almost

monochromatic energy of 54.9 MeV (82.9 MeV) in LXe by selecting 82.9 MeV (54.9 MeV) at the

opposite side of the detector, BGO.

A timing detector (plastic scintillator plates) together with a lead converter is placed in front

of the NAI/BGO detector for the evaluation of time resolution. A 1.8 cm thick lead collimator is

placed right in front of the LXe detector to evaluate the position resolution.

The CEX calibration was performed only once per year because a frequent change of the

target and beam setting is difficult. A dedicated trigger is fired by a coincidence between LXe and

the NAI/BGO detector. It is used for energy calibration. Coincidence trigger between LXe and

NAI/BGO detector is used for CEX data taking.
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Figure 3.16: Left: LXe energy vs. BGO energy. Right: LXe energy vs. Opening angle. Back-to-back
events are actively taken by moving the NAI/BGO detector.

Figure 3.17: Analysis framework in MEG. See text in detail.

3.7 Simulation and analysis tools

Figure 3.17 shows the analysis framework in the MEG experiment and the bottom half corre-

sponds to the Monte Carlo (MC) simulation framework.

MC starts from the GEM part in Figure 3.17. In this part, detector responses up to readouts
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Table 3.3: The most important MC generations in the MEG MC framework. Particles written in
brackets are not simulated in the generation.

MEG event µ+ → e+γ
MEx2G event µ+ → e+X, X→ γγ

Michel e+ µ+ → e+(νν̄) [63]
RMD e+γ µ+ → e+γ(νν̄) [63, 91]

CEX 2γ π−p →π0(n),π0 → γγ

Boron 11B(p,2γ)12C
Lithium 7 Li(p,γ)8Be

are simulated based on GEANT3 [92], which is an MC simulation tool written in FORTRAN77.

The LXe detector simulation includes the propagation of scintillation photons with reflection,

refraction, and polarization effects. GARFIELD [93] is used to simulate drift lines inside the

DCH cell. Table 3.3 shows a part of primary physics events available in the MEG MC framework.

Generated events are written in ZEBRA format developed at CERN (.rz files shown in Figure 3.17).

Then, in the Bartender part, conversion of ZEBRA files to ROOT files, electronics simulation, and

event mixing are performed. From this part, programs are written in C++. Bartender simulates

readout electronics and makes waveforms (raw files). This raw data is encoded in the same

way as the experimental raw data (.mid files). Both raw data are processed in the Analyzer
and event reconstructions are performed. The results of the analysis are written in rec files.

Parameters such as the geometry of systems and calibration factors depend on runs. We stored

these parameters in the MySQL based database.

Further detailed descriptions of the framework are available from [73, 94, 95].

3.7.1 Pseudo 2γ event

Pseudo 2γ data To evaluate performance on the reconstruction, we need 2γ data. However,

there is no 2γ data which can be used for the calibration or performance evaluation. Therefore

we made pseudo 2γ data using the existing calibration data such as CW-B, CW-Li, and CEX. We

select two events from these calibration data and they are overlaid to make pseudo 2γ events.

Technically, the number of photoelectrons and photons are summed up.

Figure 3.18 shows an example of the formed pseudo 2γ events. The left two events show

the original events coming from calibration data. The source of original events is one of the

followings:

• 54.9 MeV, 82.9 MeV from CEX

• 17.6 MeV, 14.6 MeV from 7
3Li(p,γ)8

4Be in CW

• 11.7 MeV from 11
5 B(p,γ)12

6 C in CW

The right figure in Figure 3.18 is the overlaid event.
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14.0 MeV

18.0 MeV

+

Pseudo 2γ data

Figure 3.18: Pseudo 2γ data. The left 2 γs are combined to make the right event.
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Figure 3.19: Initial energy distribution for CEX 54.9 MeV events. MC events used to make pseudo
2γ events are generated based on this distribution.

Pseudo 2γ MC To compare data and MC, pseudo 2γ MC is generated with the same procedure

as the pseudo 2γ data. The 11.7 MeV peak from CW-Boron and 17.6 MeV peak from CW-Li are

generated as a monochromatic energy source. The 54.9 MeV peak from CEX is generated based

on the finite energy distribution shown in Figure 3.19. The lower edge is 54.9 MeV. The higher

tail is due to the finite angle resolution.
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3.8. DETECTOR PERFORMANCE IN THE µ+ → e+γ SEARCH

Table 3.4: Summary of detector resolutions in the µ+ → e+γ search (from [96])

year
2009 2010 2011 2012 2013

γ

Eγ(w> 2cm)(%) 1.8 1.9 1.6 1.6 1.6
Eγ(w< 2cm)(%) 2.4 2.5 2.3 2.3 2.3

tγ (ps) 96 67 67 64 66
u,v (cm) 5 5 5 5 5
w (cm) 6 6 6 6 6

e+

Ee+ (MeV) 0.31 0.31 0.30 0.34 0.33
θ (mrad) 9.2 10.3 10.4 10.9 11.2
φ (mrad) 8.5 9.5 9.4 10.1 10.4
y (mm) 1.2 1.2 1.3 1.3 1.4
z (mm) 2.3 2.9 3.0 3.2 3.3

combined
te+γ (ps) 143 126 117 119 111

θe+γ (mrad) 14.5 14.4 14.5 14.8 14.9
φe+γ (mrad) 9.5 9.8 9.5 9.5 9.9

3.7.2 MC with pedestal data

To reproduce the background γ events like the 2γ in MC, data taken with the pedestal trigger

(Table 3.1) is used. We can randomly record data with the pedestal trigger. These data are overlaid

with MC events on the photoelectrons-basis.

3.8 Detector performance in the µ+ → e+γ search

Before we discuss event reconstruction performance for the µ+ → e+X, X → γγ search, we sum-

marize the performance for the µ+ → e+γ search in Table 3.4. Detail methods to estimate these

resolutions are summarized in Refs. [6, 73, 96].
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3.9 Overview of the MEx2G search analysis

3.9.1 Analysis strategy

The MEx2G search analysis is a combination of blind, cut-counting, and maximum likelihood

analysis. The signal region is defined beforehand and blinded to reduce the experimenter’s bias.

After applying optimized cut conditions, we count survived events. The number of survived events,

normalization, and its uncertainty are simultaneously fitted to find the number of the signal

using maximum likelihood fitting. The Feldman–Cousins method is used to get the confidence

interval.

We make full use of resources in the µ+ → e+γ search analysis in terms of the dataset and

event reconstruction point of view as we describe in the following subsections.

3.9.2 Dataset

All the detectors of the MEG experiment were ready in 2007 and we performed engineering run.

After fixing several problems found in the engineering run, physics data taking had started in

2008. From 2009 to 2013, data were accumulated as shown in Figure 3.20 except for the annual

beam shutdown period. The data in 2008 was not used for the final analysis of the MEG analysis

because of a discharge problem of the drift chamber, which resulted in a bad e+ performance. It is

not used for the MEx2G analysis, either. In total, 7.5×1014µ+s were stopped on the target. The

MEx2G analysis based on the first 1.8×1014µ+s (2009 and 2010) were presented in [62]. In this

analysis, we use the full dataset accumulated in five years.

In the MEG data taking, a dedicated trigger for µ+ → e+X, X→ γγ events was not prepared

(Section 3.5.2). We use µ+ → e+γ triggered events in the MEx2G search analysis. One of the

µ+ → e+γ trigger conditions requires back-to-back e+γ events, but it has more chance to lose the

µ+ → e+X, X→ γγ signal for the larger mass of X. This inefficiency needs to be taken into account.

Then, events were preselected at the first stage of the µ+ → e+γdecay analysis, requiring

at least one positron track and the time difference between LXe and TC to be −6.9< tLXe−TC <
4.4ns. The dataset was reduced down to ∼16% at this stage. The event reconstruction for the

µ+ → e+γdecay analysis was performed on the preselected dataset. Some reconstructions are

common between the µ+ → e+γand the µ+ → e+X, X → γγdecay analysis. We applied further

event selection on the µ+ → e+γ reconstructed dataset before the µ+ → e+X, X → γγdedicated

reconstruction. The following selections were applied: existence of multiple γs, at least one high

quality e+ track 2 , |mµ−ETotal| < mµ×20%, and Eγ > 40MeV where ETotal is energy sum of e+

and γ. We apply event reconstruction for the µ+ → e+X, X → γγdecay search on these selected

datasets.

2Selection conditions for the high quality track is defined in Section 4.1.6
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FIGURE 3.20. Number of stopped muons on target [6].

3.9.3 Event reconstruction

Event reconstruction methods for the µ+ → e+γdecay analysis are summarized in [6, 73]. All the

reconstructions related to the µ+ → e+X, X→ γγdecay analysis are summarized in Figure 3.21

and described in the subsequent chapters.

In Chapter 4, Chapter 5, Chapter 6, we discuss reconstruction methods and their perfor-

mances. e+ reconstruction is the same as the µ+ → e+γdecay analysis (Chapter 4). 2γs’ recon-

struction has been newly developed for the µ+ → e+X, X→ γγdecay analysis (Chapter 5). After

reconstruction of e+ and 2γs, reconstructed variables are combined to reconstruct the X decay

vertex (Chapter 6).

We also discuss the difference between MC and data in these chapters. In the MEx2G analysis,

we use MC to estimate the signal efficiency because events with a similar topology of signal do not

exist in data and it is difficult to extract information only from the data. Estimated differences

are used as smearing parameters to reproduce data distributions in MC.
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LXe: Waveform

time: tiPMTcharge: QiPMT

# of photoelectrons: Nphe,iPMT

# of photons: Npho,iPMT

 position: γ xγ1, xγ2

 time: γ tγ1, tγ2

 energy: γ Eγ1, Eγ2

time difference: tγγ
time difference: teγ1

X vertex position: xvtx

DCH: WaveformTC: Waveform

hit position along 
wire: ziHit

drift distance: dihit

drift time: tihitcharge: Qihit

cluster

hit cell

track seed

track

time: tiBar charge: QiBar

hit position along 
bar: ziHit

TC-DCH 
matching

e+ time: tiTrack

e+ energy: Ee+

e+ position: xe+

 momentum: γ pγ1, pγ2Vertex quality: χ2vtx

Figure 3.21: Overview of the event reconstruction. All the reconstructions start from waveform
analysis. The blue regions indicate detector-wise event reconstruction while the other regions
indicate inter-detector reconstruction. Detailed reconstruction methods will be described in the
corresponding chapters (Chapter 4, Chapter 5, and Chapter 6).
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E+ RECONSTRUCTION AND PERFORMANCE

In this chapter, the e+ reconstruction and its performance are discussed. As mentioned in

Section 3.9.3, estimation of MC smearing parameters is an important task. e+ efficiency

relevant to the MEx2G decay search is discussed in Section 7.6.4.

4.1 e+ reconstruction

The flow of the e+ reconstruction is summarized in top left half of Figure 3.21. e+ hit time

measured with TC and its trajectories under the magnetic field is measured with DCH. Then,

both information is combined to get e+ time, position, and momentum.

4.1.1 Waveform analysis

The event reconstruction starts from waveforms. We calculate the hit time and charge from

the waveform as follows: the raw waveforms are filtered using FFT to reduce known noise

contributions. We obtain six waveforms per single drift cell as shown in Figure 4.1: two are from

both ends of anode wires. The others are from adjacent cathode pads. Baselines are calculated

from the waveforms themselves in the region before the signal. The hit time is taken from an

anode waveform, which crosses a threshold determined by baselines of each waveform. Charge

integration range around the peak is optimized to minimize electrical noise contributions.
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3.2. POSITRON RECONSTRUCTION
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Figure 3.6: Example of waveforms in one cell in an event. Top two waveforms are from
both ends of the anode wire, and others are from each side of cathodes. Red horizontal
lines show the calculated baseline of each waveform. Red vertical lines at the left edge of
each peak show calculated hit timing.
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Figure 4.1: Waveforms of DCH. Top two waveforms are from both ends of anode wires and the
others are from cathode pads [97]. Red horizontal lines are calculated baselines and red vertical
lines are calculated hit times.

4.1.2 Hit position

z position Hit position along beam axis (z direction) reconstruction has two steps. First, z

position is reconstructed only using the anode information:

z0 =
(

L
2
+ Z
ρ

)
·ε0,

where L is the length of the anode wire and Z is the input impedance and ρ is the resistivity of

the anode wire. ε0 is the asymmetry of charges given by

ε0 ≡ QU −QD

QU +QD
,(4.1)

where QU and QD are calculated charges from the upstream (U) and downstream (D) ends of the

anode wire, respectively. The resolution of the charge ratio method is ∼1 cm.

The z position is then refined down to below 1 mm using the vernier pads as follows. The

refined z position is calculated by

z = lpad ·
( α
2π

+ i− n
2

)
,

where lpad = 5 cm is the length of one period of the vernier pattern; n is the total number of the

periods in a cathode pad while i indicates which period the hit position is located in (i-th period
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(a)

3.2. POSITRON RECONSTRUCTION

(a) Plot of the vernier circle calculated by
charge ratio between each vernier pad.

(b) Calculated α from the vernier circle vs z position, which
is normalized with the wire length, reconstructed by the an-
ode.

Figure 3.7: Correlation between the vernier circle and za.

Then the reconstructed z position from an anode wire za can be written as:

za =

(
L

2
+

Z

ρ

)
· ϵa. (3.9)

where L is the length of the anode wire, Z is input impedance and ρ represents the resis-
tivity of the wire. Since the resolution of the z measurement by using anode charge is only
∼1 cm, the vernier method is essential to get the resolution of single hit z measurement
down to O(100) µm. In the vernier method, the z position is given by

z = l ·
( α

2π
+ i − n

2

)
, (3.10)

where l is the length of one vernier period, which corresponds to 5 cm, n is the number
of vernier patterns, and i is the vernier turn from downstream side. Here α is defined as

α = tan−1

(
ϵ2

ϵ1

)
, (3.11)

where ϵ1 and ϵ2 are charge ratios measured by using inner and outer vernier pads respec-
tively in the same way as Eq. (3.8). As shown in Fig. 3.7(b), i can be determined by
comparing α and za.

3.2.1.2 Drift Distance

The drift distance of ionized electrons is calculated from the drift time which is determined
from the waveform of the anode wire. In the drift chamber waveform analysis, the peak
search is done in the waveform from each wire end. Then the time where the peak crosses
the threshold which determined by the RMS of pedestal is defined as a hit time as shown
in Fig. 3.6. The hit time is translated to the drift time by subtracting the time offset from
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(a) Plot of the vernier circle calculated by
charge ratio between each vernier pad.

(b) Calculated α from the vernier circle vs z position, which
is normalized with the wire length, reconstructed by the an-
ode.

Figure 3.7: Correlation between the vernier circle and za.

Then the reconstructed z position from an anode wire za can be written as:

za =

(
L

2
+

Z

ρ

)
· ϵa. (3.9)

where L is the length of the anode wire, Z is input impedance and ρ represents the resis-
tivity of the wire. Since the resolution of the z measurement by using anode charge is only
∼1 cm, the vernier method is essential to get the resolution of single hit z measurement
down to O(100) µm. In the vernier method, the z position is given by

z = l ·
( α

2π
+ i − n

2

)
, (3.10)

where l is the length of one vernier period, which corresponds to 5 cm, n is the number
of vernier patterns, and i is the vernier turn from downstream side. Here α is defined as

α = tan−1

(
ϵ2

ϵ1

)
, (3.11)

where ϵ1 and ϵ2 are charge ratios measured by using inner and outer vernier pads respec-
tively in the same way as Eq. (3.8). As shown in Fig. 3.7(b), i can be determined by
comparing α and za.

3.2.1.2 Drift Distance

The drift distance of ionized electrons is calculated from the drift time which is determined
from the waveform of the anode wire. In the drift chamber waveform analysis, the peak
search is done in the waveform from each wire end. Then the time where the peak crosses
the threshold which determined by the RMS of pedestal is defined as a hit time as shown
in Fig. 3.6. The hit time is translated to the drift time by subtracting the time offset from
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Figure 4.2: Vernier pad calculations. (a) Charge ratio of cathode pads (ε1,ε2) and α (b) α and
anode charge division (ε0).

from downstream side); α is the phase of the vernier circle calculated from charge ratios of two

cathodes:

α= tan−1
(
ε2

ε1

)
,

where ε1 and ε2 are the charge asymmetries like Equation (4.1) calculated with inner and outer

cathode pads, respectively. Figure 4.2 (a) shows relation between these variables (the vernier

circle). Figure 4.2 (b) shows α as a function of anode charge division (ε0), which is used to

determine i (in which number of period the hit exists).

Drift distance Drift distance inside the drift cell is calculated from the anode hit time. TC hit

time is set to time zero. The time difference (drift time) between hit time and the time zero is

converted to the drift distance using a pre-calculated (based on the GARFIELD software [93])

and calibrated functions.

4.1.3 Clustering and track finding

Reconstructed hits in nearby cells are clustered to remove accidental hits. The clusters are

combined to make seeds for track fitting. The seeding starts from the outer cells because track

occupancy is less in the outer region while high momentum e+s are expected to hit outer cells.

The wire coordinates are used as the first estimation of track curvature and momentum. The

seeds are extended to find other clusters by using an invariant variable p2
T /Bz (pT : transverse

momentum). Most of the left/right ambiguity inside the drift cell is also solved at this step. Then

a circle fit in x-y plane gives the first estimate of track time and the improvement of solving the

left/right ambiguity.
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4.1.4 Track fitting

The Kalman fitter technique is used to reconstruct tracks [98, 99] based on the GEANE soft-

ware [100]. The effect of materials can be taken into account by using the technique. After this

first track fitting in DCH, the track is propagated to the TC region to test matching with the TC

hits. The matched TC hits are connected to the track and then the track time is refined using the

TC hit time. Finally, the fitted track is propagated back to the stopping target and the point of

intersection of the target is defined as the decay vertex position and angle.

4.1.5 TC reconstruction

The signals from TC PMTs are processed using Double Thresholds Discriminators (DTD) to

minimize the time-walk effect. The DTD outputs a NIM pulse at the timing when the input

signal crosses the lower threshold if the signal is higher than the higher threshold. A TC hit is

reconstructed if both PMTs in a bar have signals higher than the higher threshold of the DTD.

The output NIM pulses are fitted with a template waveform to extract the timing information

(tIN and tOUT), where IN (OUT) corresponds to the PMT close to (far from) the target. Then TC

hit time is given by

tTC = tIN + tOUT

2
− bIN +bOUT

2
− wIN +wOUT

2
− L

2veff
,

where b is the time offset; w is a correction value of the time-walk effect; veff is the effective

velocity of the scintillation light inside the scintillator bar; L is the length of the bar. The hit

position along the bar is given by

zTC = veff

2
{(tIN − tOUT)− (bIN −bOUT)− (wIN −wOUT)} .

4.1.6 e+ selection

We defined selection criteria to select a single track per event from pileup events and duplicated

events from a e+. Duplicated events can occur because all the possible track combinations remain

in the reconstruction step. The criteria use tracking information1:

• The number of turn (less than 2).

• Sufficient matching quality with TC: difference of reconstructed z, r, t between TC and

tracking is small.

• Good fitting quality: the number of hits in the DCH is large enough, small χ2 of track fitting,

small uncertainty of reconstructed energy and angles.

• Target constraint: backward track propagation to the target is within its fiducial volume.

1See [6, 97] for the detailed conditions.
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• Best ranked track: select one track from several reconstructed tracks that has the best

rank defined by a principal component analysis. The rank is a linear combination of the

involved observables.
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4.2 Performance

4.2.1 Energy, angle, and position

Smearing parameters To estimate MC smearing parameters for e+s, a double turn method

was used. There is no direct way to estimate angular and position resolutions for e+s using data.

To overcome this difficulty, the double turn method was developed [73]. In this method, we select

specific events that have two turns inside the drift chamber (while typical events have ∼1.5

turns). Two turns are divided into two single turns and each turn is reconstructed individually.

The difference between these turns is compared at an imaginary plane placed after the first turn

at the beamline.

The resolutions estimated from the double turn method can differ from the true resolution.

Thus this difference between the signal resolution and the double-turn resolution is estimated

from MC and corrected. Uncertainties related to this correction are assigned to systematic

uncertainties of the estimation of smearing parameters. The quadratic difference of resolutions

between MC and data is defined as the smearing parameter. This comparison is performed using

2010 MC/data and summarized in Table 4.1.

Table 4.1: Smearing parameters

Item Smearing Systematics
E (MeV) 0.145 ±0.008
φ (mrad) 5.34 +2.45

−4.20
θ (mrad) 4.55 +1.44

−1.99
z (cm) 0.0474 +0.0942

−0.0474
y (cm) 0.0772 +0.0078

−0.0083

Resolutions e+ resolutions for the µ+ → e+γ signal (52.8 MeV) are summarized in Table 3.4.

Resolutions for lower energy e+, which are expected for the MEx2G signals, are worse than these

values. In particular, energy and angle (φ and θ) resolutions are relevant to the later analysis.

Thus, we focus on the expected resolutions of these variables.

Expected energy resolution for the MEx2G signal e+s is shown in Figure 4.3. The energy

dependence is estimated using MC with smearing and the curve is scaled to fit its resolution at

52.8 MeV. The energy resolution is below 0.5 MeV in our momentum range (Figure 2.7). We set

e+ energy window to be 1 MeV in the event selection for each mX in Chapter 7.

Energy dependence of φ and θ are estimated based on MC with smearing and scaled to

match resolutions at 52.8 MeV. The estimated dependencies are shown in Figure 4.4. These

dependencies are partially used in the vertex reconstruction as discussed in Chapter 6.
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Figure 4.3: e+ energy resolution
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Figure 4.4: Expected e+ θ (left) and φ (right) resolution

4.2.2 Timing

The time resolution of teγ is estimated from the RMD peak. Then that of te is estimated by

subtracting tγ2 contribution from σ(teγ). The e+ time resolution is summarized in Table 4.2.

To estimate smearing parameter of te, first we evaluate the time resolution using the signal

MC as shown in Figure 4.5. The energy dependent curve shown in red in the figure is fitted to this

points. 52.8 MeV-equivalent time resolution is estimated from the fitted curve and is summarized

in the second row of Table 4.2 (resolution (MC)). Then, smearing parameter is estimated from

2Section 5.3.3
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Table 4.2: e+ timing summary. "+" in the last row indicates the smearing parameter only have
the positive side of its systematics because the parameter is estimated to be 0.

(ps) 2009 2010 2011 2012 2013
resolution(Data) 106 107 96 100 89
resolution(MC) 127 93 93 92 91

smearing 0 64 28 49 0
systematics 75(+) 30 25 28 29(+)

the quadratic difference between data and MC at 52.8 MeV:

σdiff. ≡
√

|σ2
data −σ2

MC|

Since the MEx2G signals have different e+ energy depending on the mass of X, we also consider

energy dependence (lower than 52.8 MeV). The e+ time resolution can have a larger value at

mX = 20 MeV by a factor of 1.47(≡ fE), estimated from the fitted curve in Figure 4.5. We assume

the smearing parameter evolves up to fE.

If σdata −σMC > 0 (like in 2010, 2011, and 2012), the mean of the smearing parameter is

defined as

fE +1
2

×σdiff.,(4.2)

by taking average between possible maximum ( fE ×σdiff.) and minimum (1×σdiff.) values. Sys-

tematics of the mean is calculated by taking a quadratic sum of the following two contributions:

• Measurement error of the resolution:
√

(σdata +δdata)2 −σ2
data where δ is measurement

error of σdata
3.

• Contribution from possible energy dependence from the mean value (Equation (4.2)) ∼ a

half of the difference between maximum and minimum values: fE−1
2 ×σdiff.

In other cases (2009 and 2013), the mean of the smearing parameter is defined as 0. The sys-

tematics of the mean is calculated by taking a quadratic sum of the same two contributions above.

The only difference is the sign of σdata −σMC. The second contribution reflects our incomplete

understanding of the data and MC difference.

33.3% is used for δ. This value is originally estimated for teγ in the MEG final result [6]. However we use this
value both for e+ and gamma as a conservative estimation.
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The energy dependent curve in red is fitted to this points.
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5
γ RECONSTRUCTION AND PERFORMANCE

In this chapter, 2γ reconstruction and its performance are discussed. There are two re-

construction methods: one is developed for the µ+ → e+γanalysis and the other is for

the MEx2G analysis. First, we discuss basics ideas of γ reconstruction common to the

µ+ → e+γ [6, 73] and MEx2G reconstruction. Then, we focus on the MEx2G reconstruction dedi-

cated to 2γ analysis. In Section 5.3, we estimate MC smearing parameters. Finally, we discuss γ

efficiencies. These estimation is used in the MEx2G decay search analysis in Chapter 7.

5.1 Generalities

The LXe coordinates are defined in Figure 5.1. The coordinates (u,v,w) are used as LXe local

coordinates instead of MEG global coordinates (x, y, z).

Waveform analysis The analysis starts from waveform analysis. The charge and time of each

PMT are obtained from the waveform of each PMT. A digital constant fraction method is used to

determine the time of the signal. The crossing time is calculated by interpolating adjacent two

points.

The charge is calculated by integrating the waveform. A high-pass filter (moving average1)

is applied to the original waveform to suppress noise contribution. The integration range is

determined to be 48 ns and the same range is used for all the PMTs. 15% of events interact with

liquid xenon where is close (below 1 cm) to the inner surface of the detector. PMTs close to the

interaction points have larger pulse height and the waveforms are saturated. For these waveforms,

the Time Over Threshold (TOT) is used: Figure 5.2 illustrates how to calculate the charge for

189 points ∼ cutoff frequency: 11 MHz.
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Figure 5.1: LXe coordinates

saturated waveforms by TOT. First, we calculate the duration time when the waveform is below

a threshold (150 mV). This TOT correlates with charge. The correlation is calculated using a

template waveform beforehand. Finally, we convert TOT to charge for saturated waveforms.

The charge is converted into the number of photoelectrons by using a measured PMT gain.

The number of photoelectrons of i-th PMT (Npe,i) is given by

Npe,i = Q i

e ·G i
,

where Q i is the measured charge and G i is the gain of the PMT. The gain is determined by LED

data listed in Table 3.2. Then, the number of photoelectrons is converted into the number of

photons (Npho,i) by using a measured PMT quantum efficiency (QE):

Npho,i =
Npe,i

QE i
.

The QE is determined by a radioactive source (α source) listed in Table 3.2.
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Figure 5.2: Time over threshold [101]

5.2 2γ reconstruction

The reconstruction flow is summarized in the right half of Figure 3.21.

5.2.1 Pileup

The LXe detector is designed to detect γ from the µ+ → e+γdecay. More than 1γ can exist in

a single event. There are two cases in the origin of these γs: different µs and the same µ. The

MEx2G signal γs should be (at least) the latter case. In any case, we call these events pileup. In

the µ+ → e+γanalysis, these events are identified for the later analysis. We actively use these

events in the MEx2G analysis.

To identify these pileup events, a peak search is performed based on the inner and outer light

distribution by using TSpectrum2 [102]. Peaks in the two-dimensional histogram of the number

of photons are searched for. The threshold of the peak search is set to 200 photons. Events that

have more than 1 peak are identified as pileup events. When the number of pileup events is more

than 2, the following pre-fittings are iterated and the largest two peaks are selected.

5.2.2 Position and energy

Hereafter, only pileup events are analyzed. Figure 5.3 shows a typical event display of a 2γ event.

Each PMT has a contribution from each γ. The point in the 2γ reconstruction is how to divide the

number of photons observed at a selected PMT into the contribution from each γ.
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Calculation of initial values First, results from the peak search are used for the initial value

of u and v while w is set to 1.5 cm. Once the interaction point of each γ is determined, the

contribution from each γ is calculated for each PMT. Assuming

Eγ1 : Eγ2 = r : 1− r (0< r < 1),

where the initial value of r is set to 0.5. The ratio of the number of photons from γ source 1 is

r′1 =
rΩ1

rΩ1 + (1− r)Ω2
(5.1)

or

r′1 =
rd1

rd1 + (1− r)d2
(5.2)

where Ω is the solid angle between each γ and the selected PMT, which is calculated numerically,

and d is distance between each γ and the selected PMT. Equation (5.1) is used for shallower

(close to the inner surface of the LXe detector) events and Equation (5.2) is used for deeper events

because the solid angle is less sensitive for deeper events. By using this ratio and the number

of photons at each PMT, the initial value of the number of photons (Mpho,1(2)) emitted from the

interaction point of γ1(2) is calculated.

Position pre-fitting Inner PMTs with reasonable light yield is selected (nUsedPMT) and a

position pre-fitting is performed to reproduce light distributions of the LXe detector. This fitting

is performed 1γ by 1γ and iterated; first,~x1, Mpho,1 is fitted while the other parameters are fixed.

Then~x2, Mpho,2 is fitted while the other parameters are fixed.

In the fitting, the following χ2 is minimized:

χ2
pre =

1
nUsedPMT

nUsedPMT∑
i

(Npho,i −Mpho,1 ×Ωi(~x1)−Mpho,2 ×Ωi(~x2))2

σpho,i(Npho,i)2 ,(5.3)

where Npho,i is the number of photons measured at i-th PMT; σpho,i(Npho,i) is statistical uncer-

tainty of the number of photons (∝√
Npho). The minimization is performed by a grid-search in

~x1(2) = (u,v,w)1(2) space while the other parameters are fixed to the initial values.

Next, to find the better parameter sets for each γ, the following χ2 is minimized 1γ by 1γ:

χ2 =
nPMT∑

i

(Npho,i −Mpho,1 ×Ωi(~x1)−Mpho,2 ×Ωi(~x2))2

σpho,i(Npho,i)2(5.4)

If there are 3 or more peaks, the two largest peaks are selected and the largest one is defined

as γ1 and the other is defined as γ2 in the later analysis.

Energy pre-fitting The same χ2 (Equation (5.4)) is used, but in this time Mpho,1(2) is fitted

while other parameters including positions are fixed. All the PMTs except for those with lower

light yields2 are used.
2The number of photoelectrons is less than 200.
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PMT PMT

Figure 5.3: Position and energy reconstruction for 2γ

Position and energy fitting At the final step, 2γs are fitted simultaneously using the same

χ2(Equation (5.4)). All the parameters are fitted to find the final values. The position is fitted

again at this step because position pre-fitting depends on the initial value of Mpho,1(2).

Finally, Eγ1(2) is calculated from the the best-fitted value of Mpho,1(2):

Eγ1(2) = F(u,v,w)×T(t)×C×Mpho,1(2)(5.5)

where F(u,v,w) is a uniformity correction factor, T(t) is a time variation correction factor, and C

is a conversion factor from the number of photon to energy. These factors are calibrated using

various calibration methods listed in Table 3.2. The detailed description of these factors are

summarized in Refs. [6, 103].

In addition, we newly implemented the following three corrections.

5.2.3 Solid angle correction

We observed a bias on the distribution of the difference between the reconstructed energy and the

MC truth vs. the reconstructed position (u) shown in Figure 5.4. A zigzag structure is observed for

shallower events. The pitch of the structure corresponds to the interval of the PMTs (design value:

62 mm). For shallower events, the light yield is largely different depending on the γ position.

More scintillation light is collected when γ interacts directly above a PMT than the γ interacting

between PMTs. Thus the collected light is position sensitive for shallow events and this causes

the structure shown in Figure 5.4.

As shown in Figure 5.5, there is a correlation between the normalized number of photons and

a solid angle of γ interaction point covered by a PMT for shallow events. Especially, Ω is defined

as its maximum value. This correlation is fitted with the following function to find parameters to
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Figure 5.4: Solid angle bias (MC). Left: shallow events (w < 3 cm), right: deep events. The MEx2G
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Figure 5.5: Correlation between the normalized number of photons and solid angle (MC). Left:
shallow events (w < 3 cm), right: deep events.

be used for the correction:

Mpho

Eγ
= f (Eγ)× log(Ω)+a

where Mpho is the number of total photons and it is normalized using Eγ because the MEx2G

signal is not mono-energetic. f (Eγ) and a are fitted parameters. The coefficient of the solid angle

( f (Eγ)) depends on the energy because the solid angle bias should have energy dependence due

to the size of shower development.

By using the fitted parameters, the number of photons is corrected by applying the following

factor to Mpho in the last step of the energy reconstruction:

Mpho = Mpho ×
a

f (Eγ)× log(Ω)+a

60



5.2. 2γ RECONSTRUCTION

0

5

10

15

20

25

EGamma1 deep

 reco_u (cm)
20− 0 20

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−
4−

2−
0
2

4
6
8

10 h2eg1diffu_dep
Entries  9569
Mean x 0.1654− 
Mean y  0.7886
RMS x   16.96
RMS y    1.91
Integral     8991
       0     553       5
       2    8991       8
       0      10       0

EGamma1 deep

0

1
2
3

4
5
6

7
8
9
10

EGamma1 shallow

 reco_u (cm)
20− 0 20

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−
4−

2−
0
2

4
6
8

10 h2eg1diffu_sha
Entries  4747
Mean x  0.5944
Mean y  0.9319
RMS x   16.07
RMS y   2.401
Integral     4506
       0     237       0
       0    4506       0
       0       4       0

EGamma1 shallow

0
2
4
6
8
10
12
14
16
18
20
22

EGamma1 shallow

 reco_w-MC (cm)
4− 2− 0 2 4

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−
4−

2−
0
2

4
6
8

10 h2eg1diffwdiff_sha
Entries  4747
Mean x  0.1847
Mean y  0.8585
RMS x   1.022
RMS y   2.325
Integral     4337
     219      17       1
     117    4337      52
       0       4       0

EGamma1 shallow

0
2
4
6
8
10
12
14
16
18
20
22
24

EGamma2 deep

 reco_u (cm)
20− 0 20

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−

4−
2−
0

2
4
6
8

10 h2eg2diffu_dep
Entries  10108
Mean x  0.3368
Mean y 0.465− 
RMS x   17.37
RMS y   1.866
Integral     9481
       0      13       1
       6    9481      33
       0     562      12

EGamma2 deep

0
1
2

3
4
5

6
7
8
9

10
EGamma2 shallow

 reco_u (cm)
20− 0 20

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−

4−
2−
0

2
4
6
8

10 h2eg2diffu_sha
Entries  4208
Mean x  0.9779
Mean y 0.6034− 
RMS x   16.32
RMS y    2.13
Integral     4026
       0       4       0
       0    4026       0
       0     178       0

EGamma2 shallow

0

5

10

15

20

25
EGamma2 shallow

 reco_w-MC (cm)
4− 2− 0 2 4

 r
ec

o-
de

pM
C

 (M
eV

)

10−

8−
6−

4−
2−
0

2
4
6
8

10 h2eg2diffwdiff_sha
Entries  4208
Mean x  0.0993
Mean y 0.5916− 
RMS x  0.9992
RMS y   2.088
Integral     3622
       2       2       0
     363    3622      41
      62     116       0

EGamma2 shallow

0

20

40

60

80

100

120

140

EGamma

 reco-depMC 1 (MeV)
10− 5− 0 5 10

 r
ec

o-
de

pM
C

 2
 (M

eV
)

10−

8−

6−
4−
2−

0
2
4

6
8

10 h2eg1diffeg2diff
Entries  14316
Mean x  0.8256
Mean y 0.4822− 
RMS x    2.06
RMS y   1.883
Integral   1.347e+04
       7      10       1
       7   13466      73
       0      31     721

EGamma

0

5

10

15

20

25

30

35

40

EGamma

 reco-depMC 1 (MeV)
4− 2− 0 2 4

 r
ec

o-
de

pM
C

 2
 (M

eV
)

5−
4−

3−
2−
1−

0
1
2

3
4
5 h2eg1diffeg2diff2

Entries  14316
Mean x  0.6146
Mean y 0.3131− 
RMS x   1.538
RMS y   1.439
Integral   1.248e+04
      28      90       5
      98   12476     424
       0     218     977

EGamma

0

2

4

6

8

10

12

14
ratio correction

 Rrec (=E1/Eall)
0.5 0.6 0.7 0.8 0.9

 R
re

c/
R

m
c

0.9
0.92

0.94
0.96
0.98

1
1.02
1.04

1.06
1.08

1.1 h2ratiocorrection
Entries  14316
Mean x  0.6466
Mean y   1.011
RMS x  0.08943
RMS y  0.03418
Integral   1.246e+04
       0    1690       0
       0   12465       0
       0     161       0

ratio correction

Figure 5.6: Ratio bias (MC). See text in detail.

This correction reduces solid angle dependence of Mpho
Eγ

and the scale is set to Mpho
Eγ

(log(Ω))|log(Ω)=0

(the edge of shallow and deep events). The pseudo 2γ data (Section 3.7.1) is used to find these

parameters for data.

5.2.4 Ratio correction

The left plot of Figure 5.6 shows the correlation of reconstructed energy − MC truth among

2γs. Eγ1 (higher γ) tends to be reconstructed to be larger than the truth. At the same time, Eγ2

tends to be reconstructed to be lower than the truth. The sum of energies is not biased. These

observations imply that the energy ratio R defined below has energy dependence.

R = Eγ1

Eγ1 +Eγ2

The ratio is calculated using both truth (RMC) and reconstructed variables (Rrec) and its correla-

tion is shown in the right plot of Figure 5.6. The ratio of RMC and Rrec should be 1 regardless of

Eγ. However, the plot shows clear dependence on Rrec ∝ Eγ. The idea of the ratio correction is to

correct Rrec/RMC to be 1.

The pseudo 2γ data (Section 3.7.1) is used to find correction coefficients. The following five

datasets with different ratios are used to obtain a wider ratio range:

• 18 MeV + Boron(11.7 MeV): R ∼0.61

• 18 MeV + CW(11.7, 14.6, 17.6 MeV): R ∼0.61, 0.55, 0.5

• 18 MeV + CEX(54.9 MeV, 82.9 MeV): R ∼0.75, 0.82

In the data, RMC is not available. Thus we use reconstructed results from original γ events before

making pseudo 2γ data (Roriginalrec.) instead of RMC. Before making pseudo 2γ data, original γ
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CHAPTER 5. γ RECONSTRUCTION AND PERFORMANCE

events are reconstructed. This result can be used as reference because this ratio bias can occur

only in the 2γ reconstruction (we do not need to divide energy into 2 γ sources). Rrec/Roriginalrec

vs. Rrec is fitted with a linear function and Rrec is corrected accordingly to make Rrec/Roriginalrec

independent of Rrec.

5.2.5 Position correction

Figure 5.7 shows difference between reconstructed (u, v) position and MC truth as a function of

the reconstructed position. A global bias is observed for u while it is not for v. The bias comes

from an oblique incidence of γ with respect to the surface of PMTs and its shower development in

the LXe detector. When u is large, a γ is more likely to enter into the detector with an oblique

angle. In this case, the shower of such a γ develops to a larger area in the projected (u, v) surface

and this makes the bias. As for v, PMTs are installed on the cylindrical surface and γ enters

vertically without causing any bias.

This bias can have energy dependence because its origin relates to shower development. In

fact, Figure 5.7 shows that there is smaller bias for γ2 (smaller energy). Thus these distributions

are fitted with an energy dependent function like the solid angle correction (Section 5.2.3).

5.2.6 Time

To calculate a hit time of each γ, we use PMTs whose light yields from one γ are 5 times higher

than those from the other γ and remove PMTs whose light yields are less than 100 photons or

which give large χ2 value in the following fitting process. γ1,2 hit times (tγ1(2)) are reconstructed

by minimizing the following χ2:

χ2
time(tγ1(2))=

nPMT∑
i

(thit,i,γ1(2) − tγ1(2))2

σt,i(Npe,γ1(2))2 ,(5.6)

where thit,i,γ1(2) is a hit time of each γ at i-th PMT and calculated from the waveform time (tPMT,i):

thit,i,γ1(2) = tPMT,i − tdelay,i,γ1(2) − toffset,i,

where tdelay,i,γ1(2) includes contributions from a propagation time between the interaction point

and PMT and a time-walk effect; toffset,i is a time offset inside the readout electronics. σt,i(Npe,γ1(2))

is time resolution of each PMT as a function of the number of photoelectrons.
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Figure 5.7: Reconstructed u, v dependence (MC). Top: γ1, bottom: γ2, left: u, right: v. The y-axis is
difference between reconstructed position and MC truth and the x-axis is reconstructed position.
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5.3 Performance

5.3.1 Position

MC smearing To estimate MC smearing parameter on γ position, pseudo 2γ data and MC

(Section 3.7.1) are used. However, there is no position reference in the pseudo events. Thus

we use results from 1γ reconstruction, which is originally developed for the µ+ → e+γanalysis.

Its position resolution is confirmed by using a lead collimator, as the position reference in a

calibration run. Differences between 2γ reconstruction (developed for the MEx2G analysis) and

1γ reconstruction have similar distribution among pseudo data and MC. In addition, these

differences are not so large compared with the absolute resolutions. Therefore, the data/MC

difference in 1γ reconstruction can also be used for that in 2γ reconstruction. Differences of {2γ

results − 1γ results} between data and MC are estimated and treated as a systematic uncertainty

of the data/MC difference.

In 1γ reconstruction, the data/MC difference is estimated by using a lead collimator in CEX

run. The collimator (the right one was used) is shown in Figure 5.8. The collimator was placed

just in front of the LXe detector. The number of γ events is reduced at positions on which the

γ rays impinge across the bulk of the collimator, and hence, the event distribution shows the

shadow of the collimator. The reconstructed distribution is shown in the left plot of Figure 5.9.

Three peaks around the center region correspond to three slits in the collimator. These peaks

are fitted with triple Gaussians and two error functions (for the outer region) to extract its

width. The same analysis was performed on MC and the result is shown in the right plot of

Figure 5.9. The difference of position resolution between data and MC is estimated to be 1.8 mm.

This value is used for the MC smearing. A possible reason for the difference is incomplete PMT

calibration. Its systematic uncertainty is estimated and summarized in Table 5.1 by comparing

pseudo data and MC. These values are averaged over different energy range (Boron and CEX

data). Larger systematics in w comes from a peak shift. Note that this uncertainty is expected to

have little effect on the signal efficiency. It is because the smeared position is used as an initial

value in maximum likelihood fitting in the vertex reconstruction and does not directly affect its

performance.

Figure 5.8: The lead collimator used in 2008. The thickness is 1.8 cm, width of the slit is 1 cm,
and a 2-inch PMT is superimposed as a reference.

64



5.3. PERFORMANCE

Table 5.1: Smearing parameters

Item Smearing Systematics
u (cm) 0.18 ±0.10
v (cm) 0.18 ±0.06
w (cm) 0.18 ±0.13
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Figure 5.9: Event distribution with the lead collimator along v for data (left) and MC (right) [103].

Table 5.2: γ position resolution

Item Core Resolution Tail Resolution
u1 (cm) 0.54±0.01 2.32±0.11
v1 (cm) 0.49±0.01 1.58±0.07
w1 (cm) 0.66±0.01 4.45±0.17
u2 (cm) 0.53±0.01 3.47±0.08
v2 (cm) 0.44±0.02 1.84±0.10
w2 (cm) 0.63±0.01 4.57±0.11

Performance Position resolution for the MEx2G signal is estimated using MC for parameter

sets of (20, 25, 30, 35, 40, 45) MeV × 20 ps. Then its resolution is smeared with 1.8 mm to take

the data/MC difference into account. The smeared distributions are fitted with double Gaussian.

Figure 5.10 shows typical position resolution. Core and tail resolution do not depend on mX,τ. Its

standard deviation is estimated to be 1–3% and it is treated as an uncertainty when we quote

single resolution value. Its average is quoted as position resolution for the MEx2G signal. These

results are summarized in Table 5.2. Core to tail ratios are ∼0.8.

5.3.2 Energy

MC smearing Next, we estimate MC smearing parameter on γ energy. For this purpose, pseudo

2γ data and pseudo 2γ MC of Boron(11.7 MeV) and CEX (54.9 MeV) are used because there are

energy references. Thus we can directly compare data and MC.

The response function of the LXe detector for monochromatic γs has an asymmetric shape;
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Figure 5.10: Differences between reconstructed position and MC truth. (30MeV, 20 ps) is selected
and plotted.

low energy tail. There are two reasons for the tail: first, γs interact materials before the LXe

detector and lose their energy. Second, a part of the γ shower escapes from the fiducial volume.

To include this lower tail, the reconstructed spectrum is fitted using an exponential Gaussian

function. The exponential Gaussian is described as:

F(x)=


A exp

(
− (x−x0)2

2σ2
Eγ

)
(x > x0 +τ)

A exp
(

τ
σ2

Eγ
(τ/2− (x− x0))

)
(x ≤ x0 +τ)

(5.7)

where A is a scale parameter, x0 is a peak position, σEγ
energy resolution, and τ is a transition

parameter. The exponential Gaussian has an exponential component when x is lower than x0 +τ

and Gaussian component when x is higher than x0 +τ. The peak position and the transition

position is not necessarily the same and the difference is included in τ. In the fitting, we use a

double exponential Gaussian to fully include tail resolution.

Reconstructed Boron spectra are shown in Figure 5.11. Color solid lines are fitted curves. The

left plot is from pseudo-MC and the right plot is from pseudo data. Fitting is performed based

on the double exponential Gaussian. We added a background spectrum in the fitting function as

exponential for pseudo data whereas we simply use double exponential Gaussian for pseudo-MC.
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Figure 5.11: Reconstructed Boron (11.7 MeV) spectrum. Left: MC, right: data.
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Figure 5.12: Reconstructed CEX (54.9 MeV) spectrum. Left: MC, right: data.

It is because we only simulate the monochromatic Boron peak; we do not simulate a background

γ from the lower events whose energy is less than 10 MeV. For the fair comparison, in the fitting,

we added the background function only in data. To extract the smearing parameter from these

two plots, we first compare the resolution of the core and tail, respectively. Then, these two

quadratic differences are weighted with the core fraction. The smearing parameter for Boron

events is estimated to be 0.46 MeV.

To evaluate the energy resolution using CEX data, first, we apply an angle correction. There

is a correlation between opening angle and reconstructed energy in LXe detector as shown in the

right plot of Figure 3.16. Thus we correct the energy based on the reconstructed opening angle:

the energy of ∼55 MeV γ becomes lower by this angle correction. The smearing parameter for

CEX events is estimated to be 0.66 MeV in the same way as the Boron case.

Combining two results described above, the energy smearing parameter is defined to be

0.56+0.10
−0.21 MeV by averaging over these two estimations. The energy smearing does not affect so

much on the signal efficiency, so that we define the single value for simplicity. Its systematic

uncertainty is assigned to this value taking into account the core resolution of Boron and the
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Figure 5.13: Expected signal gamma energy resolution. Band comes from systematics of the
smearing parameter. Statistical error of the mean resolution estimation is small compared with
the systematics.

average resolution of CEX. 3

Performance Expected signal energy resolution can be estimated using signal MC smeared

with the parameter obtained above. The results are shown in Figure 5.13. The left half is for the

lower γ and the right half is for the higher one. Core resolution and tail resolution are plotted

individually. To sum up, expected signal energy core (tail) resolution is 2–3% (4–7%) for γ1 and

2–6% (6–13%) for γ2. These values should be compared with the CEX resolution 2% (5%) for the

higher γ and the Boron resolution 4% (13%) for the lower γ. The expected energy resolution from

MC agrees with the pseudo data.

Finally, the linearity of the energy scale is confirmed using pseudo 2γ data as shown in

Figure 5.14. Uncertainty of the energy scale is estimated to be 1% from residuals of a linear

fitting.

3Comments on this individual smearing: this smearing is applied on γ1 and γ2, individually. What we want to
smear here is the difference between data and MC and this is possibly due to an incomplete calibration of photosensors
and incomplete implementation of the light distribution inside the detector. The first effect is treated individually,
and the second effect can have a correlation between two γs. However, the possible correlation is already taken into
account in the ratio correction (Section 5.2.4) in the 2γ reconstruction framework.
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Figure 5.14: Linearity of reconstructed energy. pseudo 2γ data is used.

5.3.3 Time

The time resolution of tγ is estimated using the CEX data and summarized in Table 5.3. In

the CEX run, we took nearly back-to-back 2γ events. These 2γs are emitted at the same time

and one enters into the LXe detector, and the other enters into the NAI/BGO detector. By

subtracting the time resolution of the NAI/BGO detector, we can get the time resolution of the

LXe detector. Figure 5.15 shows energy dependence of the time resolution. Black points show

measured time resolution including NAI/BGO contribution in the CEX calibration. Red points

show LXe intrinsic resolution; time resolution a preshower counter placed in front of NAI/BGO

for timing measurement is subtracted. In the CEX calibration, we obtain the time resolution at

55 MeV and 83 MeV. By fitting them with an energy-dependent function shown in Figure 5.15,

its energy dependence and the time resolution at lower energy can be calculated.

A smearing parameter and its systematics are estimated in the same way as positron (Sec-

tion 4.2) and summarized in Table 5.3.
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Table 5.3: Gamma time summary. "+" in the last row indicates the smearing parameter only
have the positive side of its systematics because the parameter is estimated to be 0. In 2010, the
readout board was modified, resulting in the improvements of timing accuracy from the previous
year.

2009 2010 2011 2012 2013
resolution (ps, Data) 96 67 67 64 66
resolution (ps, MC) 69 69 69 69 69

smearing (ps) 94 0 0 0 0
systematics (ps) 36 34(+) 34(+) 49(+) 40(+)

 (MeV)γE
40 50 60 70 80 90 100

 (
ps

ec
)

σ
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20
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 (psec)  2(MeV) + 109γE / 2338 = σ

 (psec)  2(MeV) + 45γE / 2338 = σ

Figure 5.15: Energy dependence of time resolution. Black points show measured timing reso-
lution including NAI/BGO contribution in the CEX calibration. Red points show LXe intrinsic
resolution [73].
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5.3.4 Efficiency

The 2γ efficiency is used in the estimation of normalization in the MEx2G decay search analysis

(Section 7.6). It is defined as

εγ ≡ P(2γ ∈ acceptance&γtriggered&2γreconstructed |e+ ∈ acceptance).(5.8)

There are three conditions in γ efficiency. It is estimated using the signal MC. First, 2γs should

be in the detector acceptance, and then they have suitable energy to fire the trigger. Finally, they

should be successfully reconstructed. The definition of each step is summarized as follows:

5.3.4.1 Acceptance

For the MC, 2 γs are supposed to enter the LXe acceptance when they satisfy the following

conditions4:

• Each energy deposit is more than 5 MeV.

• Total energy deposit is more than 35 MeV.

• γ direction is in an extended detector volume. (|u| < 28.1cm∧|v| < 74.1cm)

• Position of X→ γγ decay vertex is before the LXe (the decay length is less than 67.85 cm).

Figure 5.16 shows gamma acceptance for 20 ps as a function of mX. Larger mass makes the

opening angle between 2γs larger and it makes it difficult for both γs being in the detector

acceptance.

5.3.4.2 Eγ trigger efficiency

Eγ trigger requires the energy of γ to be larger than ∼40 MeV (Qγ). In practice, the threshold was

set against the sum of PMT charges (Qsum) depending on the detector status. When triggering

with the MEG trigger, we also require a cosmic veto threshold. For the µ+ → e+γ event (52.8 MeV),

the threshold (∼65 MeV, Qveto) is large enough and the veto does not affect the µ+ → e+γ event.

However, it does affect the µ+ → e+X , X → γγ event. Therefore we need to estimate Eγ trigger

efficiency taking both of Qγ and Qveto into account.

Table 5.4 shows the history of Eγ trigger threshold (Qγ and Qveto). The run periods are

determined by the cosmic veto threshold (Qveto) and beam conditions. To make trigger efficiency

curve from the data, we use CEX calibration data of each year. There are high energy (∼ 60 MeV)

γs in the CEX data. Figure 5.17 illustrates how to estimate gamma trigger efficiency. The offline

energy spectrum without any cuts is shown in the blue histogram of Figure 5.17. The Qsum value

used in the online trigger logic is also recorded in the data and the spectrum is shown in the right

4At this step, looser conditions are applied to take detector resolutions into account.
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Figure 5.16: Gamma acceptance (20 ps). The error bar includes systematic uncertainty of the
beam position.

histogram of Figure 5.17. By applying the Qγ and Qveto cuts for the µ+ → e+γ trigger to the CEX

data, we can simulate the trigger effects. The red histogram in Figure 5.17 shows the spectrum

after the cuts. Finally, the γ trigger efficiency curve is obtained by taking the ratio between these

energy spectra. The left bottom figure in Figure 5.17 shows the curve with a run period of 2009a.

The drop in the lower region corresponds to Qγ trigger, and that in the higher region corresponds

to Qveto trigger.

Two different functions depending on the run periods are fitted to the obtained efficiency

curves. Two sided error function is used for 2009a, 2009b, 2010a, 2010b, and 2011a (left figure in

Figure 5.18). Error function with a line (pol1) is used for 2011b, 2012, and 2013 (right figure in

Figure 5.18). The efficiency curves for all run periods are shown in Figure 5.19.
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Table 5.4: Definition of run periods.

thresholds
run period start run# end run# Qγ(a. u.) Qveto(a. u.)

2009a 51823 61178 10340 15000
2009b 61218 64487 10100 15000
2010a 73691 74410 11900 16800
2010b 74518 92348 11900 20000
2011a 100035 100070 10100 17000

100100 123630 10000 17000
2011b 123745 141661 10000 25000
2012 144893 145567 10000 26000

145617 148750 10700 26000
148752 152745 10400 26000
152746 197087 10700 26000

2013 199928 233334 10250 26000

w/ cut 
w/o cut

Figure 5.17: An example to estimate gamma trigger efficiency. Top left figure is Eγ spectrum; top
right figure is corresponding charge spectrum. 2 peaks come from 55 MeV and 83 MeV in the
CEX data; bottom figure is estimated trigger efficiency curve. See text in detail.
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Figure 5.18: Gamma trigger efficiency curve fitting.
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Figure 5.19: Gamma trigger efficiency curve fitting (all run periods)
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Since the threshold for the trigger depends on the energy scale, its shift and uncertainty need

to be taken into account

Gain drop effect During the MEG data taking, we observed that the PMT gains gradually

decreased (at most ∼ 0.2%/day) under the µ beam. To keep the effective threshold stable, we

updated the online trigger threshold once in 10 days. However, this means that the effective

threshold can differ at most 2% before and after changing the online threshold. Therefore we

assigned ±1% systematic error on the energy scale to take this effect into account.

Effective threshold difference between the CEX and µ+ → e+γ trigger The gain decrease

rate under π beam (CEX trigger) was ∼3 times higher than that under the µ beam (µ+ →
e+γ trigger). The efficiency curves are estimated using data taken under the π beam in one day

without updating the threshold values. Therefore we need to take these differences into account

as a correction of the energy scale shift and estimated to be −0.35%±0.25%.

5.3.4.3 Reconstruction efficiency

2γs are successfully reconstructed if the following conditions for the reconstructed variables are

true.

• The 2γ energy and position fitting are converged.

• Each energy deposit is more than 10 MeV.

• Total energy deposit is more than 40 MeV.

• γ directions are in the detector fiducital volume(|u| < 25cm∧|v| < 71cm)

• Distance between 2γ positions in the inner surface is more than 20 cm.

5.3.4.4 Pileup inefficiency

In the evaluation of γ efficiency based on MC, we use the signal MC. However, other γs may

come into the detector and it may be reconstructed as one of the signals in the experimental

environment. We estimate this effect by using pedestal MC (Section 3.7.2). The pedestal trigger

events were taken using the pedestal trigger in the MEG run. The number of photoelectrons and

photons are superimposed onto the signal MC to reproduce the background γ environment. We

estimate the pileup inefficiency to be at most ∼ 5% and this is incorporated into the γ efficiency.

75



CHAPTER 5. γ RECONSTRUCTION AND PERFORMANCE

MeV
20 25 30 35 40 45

%

0.5

1

1.5

2

2.5

3

Gamma efficiency (20 ps)Gamma efficiency (20 ps)

MeV
20 25 30 35 40 45

%

50

60

70

80

90

DM efficiency (20 ps)DM efficiency (20 ps)

MeV
20 25 30 35 40 45

%

50

55

60

65

70

Selection efficiency (20 ps)Selection efficiency (20 ps)

MeV
20 25 30 35 40 45

%

0.2

0.4

0.6

0.8

1

1.2

1.4

All efficiency (20 ps)All efficiency (20 ps)Figure 5.20: Two gamma efficiency (20 ps). The error bar only includes statistical uncertainty.
Other systematic uncertainties are included in the estimation of normalization factor (Sec-
tion 7.6.9).

5.3.4.5 Detection efficiency

γ detection efficiency in the µ+ → e+γ analysis is estimated to be 62.5±2.3% (relative uncertainty:

r1γ = 3.7%) [6]. This relative uncertainty estimated for the µ+ → e+γ event (1γ) is used to estimate

the relative uncertainty for the MEx2G event (2γ). The 2γ efficiency can be changed from (1−r1γ)2

to (1+ r1γ)2 and the difference from 1 is assumed to be its relative uncertainty. 7.4% is assigned

to the systematic uncertainty of 2γ efficiency.

5.3.4.6 Summary

After applying all the conditions above, 2γ efficiencies are estimated and shown in Figure 5.20.

These values are weighted averaged efficiencies using normalization of each year. No significant

difference among lifetimes is observed and the results of 5 ps and 40 ps are summarized in

Appendix B. mX dependence comes from gamma acceptance; efficiencies except for the gamma

acceptance is ∼16% for all mX.
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6
COMBINED RECONSTRUCTION AND PERFORMANCE

In this chapter, a combined reconstruction, especially, X→ γγ decay vertex reconstruction

is discussed. A maximum likelihood fitting is used for the vertex estimation.

6.1 Combined reconstruction

The main goal for the combined analysis is to reconstruct the decay vertex position of X (X→ γγ

vertex). Hereafter we assume mX in the reconstruction. A different mass assumption gives a

different reconstructed result. mX is assumed to be 20–45 MeV at 1 MeV intervals, which is small

enough not to lose the signal in between1.

6.1.1 X decay vertex

Least square fitting

Analytical calculation

Maximum likelihood fitting

New method

Combine both results

Old method

Figure 6.1: Overview of the vertex reconstruction.

Figure 6.1 shows the overview of the vertex reconstruction. There are two parts: the calcu-

lation of initial values and maximum likelihood fitting. There are two ways to calculate initial
1This interval is revisited in Section 7.1.
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Eγ1, ⃗x γ1

Eγ2, ⃗x γ2

r1

r2

mX pX γ, β Eγ1, Eγ2

θγ1, θγ2

⃗x vtx ⃗x γ1, ⃗x γ2

⃗x e θX, ϕX

cos θrest
ϕrest, r1,2

rotation angle around 
 emission direction at    

-rest frame
X

X

distance b/w  
vertex and  position

Xγ γ
γ

 emission angle 
at -rest frame
γ

X

 vertex positionXγ γ

 position at the targete+

⃗x vtx⃗x e
mX

Figure 6.2: Left: definition of variables. Right: relations between variables in the vertex recon-
struction. Fitting parameters are shown in red.

values: least-square fitting and analytical calculation. These two methods have a different bias

(tail distribution) on the vertex reconstruction. Thus it is better to combine both results as an

initial value. In the previous study in 2010, the least square fitting was used [62]. Analytical

calculation is newly implemented in this study. The maximum likelihood fitting enables us to use

the more realistic probability density function (PDF) in the reconstruction than the least square

fitting. This is also new.

6.1.1.1 Calculation of initial values

Least square fitting The variables below are calculated kinematically when mX,θrest,φrest, r1,2,~xvtx,~xe

are given:

Eγ1,2 (mX,θrest)

~xγ1,2(mX,θrest,φrest, r1,2,~xvtx,~xe)

θX (~xvtx,~xe)

φX (~xvtx,~xe) ,

where θX,φX are X direction. The relation between variables are shown in Figure 6.2. θrest,φrest

are defined in Figure 2.6; θrest is γ emission angle at X-rest frame (in this frame, 2γs are emitted

in the opposite direction); φrest is rotation angle around X-emitted direction at X-rest frame; r1(2)

is distance between X decay vertex (X→ γγ) and γ interaction position in the LXe detector (the

left figure of Figure 6.2);~xvtx,~xe are vertex position and e+ position at the target, respectively.

Our task is to find ~xvtx. mX is fixed and measured value is used for ~xe. θrest,φrest, r1,2 are
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θ1 + θ2
γ1(A)
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γ1(A)
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θ1
θ2

V

γ1(A)

γ2(B)

V

e+
θ1
θ2

(a) (b) (c)

vertex circle

virtual 
vertex

reconstructed 
vertex

Figure 6.3: Analytical calculation of the X decay vertex. See text in detail.

fitted but not to be used in the later analysis. χ2 to be minimized is given by

χ2
LS(6.1)

= χ2
LS(Eγ1,2,~xγ1,2,θX,φX)= χ2

LS(θrest,φrest, r1,2,~xvtx)

= ∑
γ=γ1,γ2

(
Emeasured
γ −Eγ

σEγ

)2

+ ∑
γ=γ1,γ2

(
~xmeasured
γ −~xγ

σ~x

)2

+
(
θmeasured

X −θX

σθ

)2

+
(
φmeasured

X −φX

σφ

)2

,

where variables with measured in Equation (6.1) indicates are measured variables from e+ and γ

reconstruction. θmeasured
X and φmeasured

X are defined as the opposite direction of e+. Resolutions of

each variable is assigned to its uncertainty (σ) in the χ2.

Analytical calculation Another method to find the vertex position is an analytical calculation.

We have enough information to analytically calculate the vertex position. The calculation can be

summarized as follows:

• Given: mass of X (mX ), energy of 2γ (Eγ1,2), position of 2γ ((u,v,w)1,2), position of e+ at the

target ((x, y, z)e+)

• Find: position of the X→ γγ vertex ((x, y, z)X )

Figure 6.3 shows how to calculate the vertex. The calculation below works on the e+-γ1-γ2-surface.

1. Calculate θ1 and θ2 from Eγ1 ,Eγ2 ,and mX (Equation (2.11) and Equation (2.11)).

2. Calculate vertex circle with the same inscribed angle (Figure 6.3 (a)).

3. Calculate virtual vertex (V, in blue) which divides circumference AB with AV : V B = θ1 : θ2

(Figure 6.3 (b))

4. Make line (in blue) between X and e+ at the target to find the reconstructed vertex (Fig-

ure 6.3 (c)).

79



CHAPTER 6. COMBINED RECONSTRUCTION AND PERFORMANCE

Eγ1, ⃗x γ1

Eγ2, ⃗x γ2
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r2

mX pX γ, β Eγ1, Eγ2

θγ1, θγ2

⃗x vtx ⃗x γ1, ⃗x γ2

⃗x e θX, ϕX

cos θrest
ϕrest

⃗x vtx⃗x e

mX
l

l τ

Figure 6.4: Left: definition of variables. Right: relations between variables in the vertex re-
construction. Fitting parameters are shown in red. Differences from Figure 6.2 are shown in
blue.

6.1.1.2 Maximum likelihood fitting

The least-square fitting and the analytical calculation can roughly find the vertex position but

the uncertainty of the reconstructed variables cannot be incorporated correctly. Thus both results

are used as the initial value of the maximum likelihood fitting. The maximum likelihood fitting is

performed 50 times for each initial value by changing its initial value randomly at each time to

avoid a local minimum of the minimization. The parameter set which provides the maximum

likelihood is used as the final result. Residuals are also calculated to use it for vertex quality cut.

Relations between parameters are illustrated in Figure 6.4. The differences from the least square

fitting are:

• Implement energy dependent and asymmetric PDF for Eγ1 and Eγ2.

• Implement double Gaussian position PDF for (u, v, w).

• Implement decay length (l) information into the fitting.

Observables are the following:

X = (Eγ1,Eγ2,~x1,~x2,~xe)

Fitting parameters are the following:

Θ= (cosθrest,φrest,~xvtx)
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Figure 6.5: PDF morphing technique. Left: pseudo Boron 2γ data. Center: pseudo CEX 2γ data.
Right: cumulative distribution of the other two distributions.

The likelihood function L(Θ) is defined as below:

L(Θ) = P(Eγ1|cosθrest,mX )

× P(Eγ2|cosθrest,mX )

× P(~x1|cosθrest,φrest,~xvtx,~xe,mX )

× P(~x2|cosθrest,φrest,~xvtx,~xe,mX )

× P(θe|~xvtx,~xe)

× P(φe|~xvtx,~xe)

× P(l|~xvtx,~xe,τ)

Eγ1 and Eγ2 are assumed to be independent thanks to the ratio correction (Section 5.2.4) in the

2γ reconstruction. P(~xe|~xe
true) term is neglected by using measured value ~xe to reduce fitting

parameters. PDFs used for the maximum likelihood fitting are assumed to be single Gaussian

functions only for positron angles. Descriptions of other PDFs are the following.

Gamma energy PDF The Eγ PDF has the following information:

• Energy-dependent PDF

• Lower tail

To make full use of this information, a PDF morphing technique is used to make the Eγ PDF.

Figure 6.5 and Figure 6.6 illustrate how the PDF morphing [104] works . The first two figures in

Figure 6.5 are the original PDFs. Both are fitted spectrum of Eγ distribution of different energies

using pseudo data. The task here is to interpolate and find PDFs between these two PDFs.

First, we normalize the original distribution (left and center distributions in Figure 6.5)

and make the cumulative distribution form these distributions as shown in the right figure in

Figure 6.5. Then we find x1, x2 such that∫ x1

0
p1(x)dx =

∫ x2

0
p2(x)dx = y,
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Figure 6.6: PDF morphing.

where y ranges from 0 to 1. Cumulative distribution function of the interpolated PDF p(x) is

defined as ∫ αx1+(1−α)x2

0
p(x)dx = y,(6.2)

where α is a interpolation parameter ranging from 0 to 1. α = 0 and α = 1 correspond to the

original distributions. Equation (6.2) gives the form of interpolated PDF:

pinterpolate(αx1 + (1−α)x2)= p1(x1)p2(x2)
αp2(x2)+ (1−α)p1(x1)

.

Figure 6.6 shows the resulting PDFs. By definition, α is proportional to the energy. We can get

any PDF with selected energy between the original PDFs by selecting α.

Interpolated PDFs are not exactly the same as the true PDF. It is because this interpolation

procedure is linear while the width of the true PDF is not linear to its energy. However, it is good

enough for our use on the fact that the original purpose for the maximum likelihood fitting is

already achieved.

Gamma position PDF The difference between reconstructed position and true position has

tail components and it is fitted with a double Gaussian function. There are two ways to implement

gamma position PDFs. The first one is using the product of three independent double Gaussian

PDFs assuming no correlation. The second one is a 3D histogram to take all the correlations into

account. There is no significant difference in reconstructed distributions between these two ways.

For the simplicity, double Gaussian PDF is used as gamma position PDFs.

Decay length PDF The likelihood function up to here has small information on the direction

along X. The decay length l of X is also implemented into the likelihood function:

p(l,mX,τ)= γβcτ · e− l
γβcτ .(6.3)
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This PDF is defined and normalized in l ≥ 0. We fix τ= 20 ps because no significant change in

vertex performance by assuming different τ for the assumed τ range in this analysis.

6.1.2 Goodness of the vertex fitting, momentum, and time difference

The following items are calculated when the X decay vertex position is determined.

6.1.2.1 Goodness of the vertex fitting

We define goodness of the vertex fitting as the following χ2. This value is to be used in a event

selection of the MEx2G signal (Section 7.4).

χ2 = χ2
LS +χ2

l ,(6.4)

where the first term comes from Equation (6.1) and the second term comes from the decay length

and defined as follows:

χ2
l =

(
lbest

γβcτ

)2
.(6.5)

Since we use maximum likelihood fitting, the χ2 is not minimized during the fitting. Instead, we

calculate the χ2 using maximum likelihood fitted parameters by assigning a single Gaussian

resolution to σ of each variable.

6.1.2.2 Momentum

After the vertex reconstruction, we can calculate the momentum of each γ from their positions

and energies. Finally, the sum of these momenta together with the e+ momentum is calculated

and this is used for the signal selection by requiring the momentum conservation.

~Psum ≡ ~Pe+ +~Pγ1 +~Pγ2(6.6)

6.1.2.3 Time difference

As we discuss in Chapter 7, blinding and background estimation are performed on the tγγ–tγ1e

surface, where tγγ is time difference between 2γs and tγ1e is time difference between γ1 and

positron. These time differences are calculated from the reconstructed time: tγ1 , tγ2 , te. tγ1 and tγ2

are reconstructed time inside the LXe detector and te is reconstructed time at the target.

Figure 6.7 illustrates schematics of the MEx2G decay. r1(2) is distance between γ1(2) and

the vertex position of X → γγ. l is distance between the vertex position of X → γγ and that of

µ+ → e+X. tγγ should be 0 at the vertex position of X→ γγ. Thus tγγ is calculated as

tγγ = (tγ1 −
r1

c
)− (tγ2 −

r2

c
).(6.7)
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tγ1

tγ2

r1

r2
l

μ+ → e+X
X → γγ

Figure 6.7: Calculation of time differences.

tγ1e should be 0 at the vertex position of µ+ → e+X. Thus tγ1e is calculated as

tγ1e = (tγ1 −
r1

c
− l
βc

)− te.(6.8)

6.2 Performance

6.2.1 X decay vertex

Vertex resolution is estimated using MC. These results are used in the vertex quality cut. All the

inputs in the vertex reconstruction are smeared to reproduce data and thus the vertex resolutions

evaluated in the MC should reproduce expected performance in data. Therefore, the following

performances are not directly used in the MEx2G decay search (Chapter 7).

Vertex position The vertex resolution is evaluated by the difference between the reconstructed

position and the MC truth. Figure 6.8 shows these distributions in (x, y, z). The distributions in

red are the final results and those in blue are the results with the old reconstruction method in

2010 without using the maximum likelihood. All the distributions become sharper than before;

RMS of the distributions become smaller by 35–45%. In addition, tail events are reduced and this

is expected to increase the signal efficiency.

Vertex quality An important variable to reduce the background events while keeping the

signal is one related to the vertex quality. The vertex quality is defined as a χ2 (Equation (6.4)) of

all the related variables after the maximum likelihood fitting in the vertex reconstruction. The

χ2 distribution as a function of assumed mass is shown in Figure 6.9. To show its dependence
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Figure 6.8: An example of vertex position resolution. (mX,τ)=(30 MeV, 20 ps). The results from
the old reconstruction are shown in blue and those from the new one are shown in red.

0

2000

4000

6000

8000

10000

12000

14000

chi distribution

 assumed mass (MeV)
0 10 20 30 40 50

 c
hi

0

1000

2000

3000

4000

5000

6000 h2chiLS
Entries  383282
Mean x   25.32
Mean y   475.7
RMS x   14.04
RMS y   752.2
Integral   3.831e+05
       0     226       0
       0  383056       0
       0       0       0

chi distribution

0

500

1000

1500

2000

2500

chi distribution

 assumed mass (MeV)
10 20 30 40

 c
hi

0

10
20
30

40
50
60

70
80
90

100 h2chiLS2
Entries  383282
Mean x   33.65
Mean y   33.74
RMS x   7.573
RMS y   29.79
Integral   1.992e+05
       0  184059       0
       0  199223       0
       0       0       0

chi distribution

0

200

400

600

800

1000

1200

1400

chi distribution

 assumed mass (MeV)
10 20 30 40

 c
hi

0
10
20

30
40
50

60
70
80
90

100 h2chiML
Entries  392251
Mean x      30
Mean y   34.51
RMS x   11.57
RMS y   22.21
Integral   3.009e+05
       0   91357       0
       0  300887       0
       0       7       0

chi distribution

0

1000

2000

3000

4000

5000

NLL distribution

 assumed mass (MeV)
10 20 30 40

 N
LL

0

100

200

300

400

500

600 h2NLLML
Entries  392148
Mean x      25
Mean y   90.08
RMS x   14.15
RMS y   107.9
Integral   3.915e+05
       0      21       0
       0  391475       0
       0     652       0

NLL distribution

0

200

400

600

800

1000

1200

NLL distribution

 assumed mass (MeV)
10 20 30 40

 N
LL

0
10
20

30
40
50

60
70
80
90

100 h2NLLML2
Entries  392148
Mean x   31.05
Mean y   37.03
RMS x   11.32
RMS y   24.17
Integral   2.858e+05
       0  105732       0
       0  285764       0
       0     652       0

NLL distribution

0

500

1000

1500

2000

2500

3000

NLL distribution

 assumed mass (MeV)
10 20 30 40

 N
LL

0
100

200
300
400

500
600
700

800
900

1000 h2NLLML3
Entries  392148
Mean x   30.09
Mean y   176.9
RMS x   1.455
RMS y   243.1
Integral   2.597e+04
       0  366176       0
       0   25972       0
       0       0       0

NLL distribution

0

1000

2000

3000

4000

5000

chi distribution

 assumed mass (MeV)
0 10 20 30 40 50

 c
hi

0
20
40
60
80

100
120
140
160
180
200
220
240 h2chiML2

Entries  392251
Mean x      25
Mean y   56.69
RMS x   14.14
RMS y   46.16
Integral   3.92e+05
       0     275       0
       0  391969       0
       0       7       0

chi distribution

0

100

200

300

400

500

600

700

800

chi2 distribution

 assumed mass (MeV)
10 20 30 40

 c
hi

2

0

50

100

150

200

250

300 h2chi2ML
Entries  392251
Mean x   30.66
Mean y   122.5
RMS x    3.39
RMS y   86.45
Integral   8.093e+04
       0  311320       0
       0   80931       0
       0       0       0

chi2 distribution

χ 2

Figure 6.9:
√
χ2 distribution.

√
χ2 is plotted to clearly see the mass dependence. If the assumed

mass and true mass differ,
√
χ2 becomes larger. (mX,τ)=(30 MeV, 20 ps)

clearly, we take a square root of χ2. The MC truth is (mX,τ)=(30 MeV, 20 ps) in this case. If the

assumed mass is the same as the truth, the χ2 takes its minimum value. If the assumed mass

becomes far from the truth, the χ2 gets larger and larger. We discuss signal and background

separation on the χ2 in Section 7.4.

6.2.2 Time difference

Both tγγ and tγ1e are explained in Section 6.1.2.3. tγ1e includes contribution from different

detectors and thus time difference between detectors needs to be calibrated. After the detector

based calibrations, te is adjusted (tshift) by using the position of the RMD peak. Figure 6.10 shows

a distribution of teγ for the µ+ → e+γ trigger after the adjusting. Therefore, teγ is given by

tγ1e = (tγ1 −
r1

c
− l
βc

)− (te + tshift)
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Figure 6.10: RMD peak [6]. All the data from 2009 to 2013 are accumulated and the peak position
is already adjusted to 0.

tγ1e needs to be further shifted to take a time reconstruction bias into account. MC studies

show that there is a bias between µ+ → e+γ time reconstruction and MEx2G time reconstruction

as shown in Figure 6.11. The bias depends on the energy of γ and the difference of energy-

dependent time correction can cause bias. However, this correction is not applied on the MEx2G

time reconstruction because the correction factor is calculated for µ+ → e+γ energy range and not

suitable for the MEx2G case. tγ1e is shifted by the mean value of this distribution (the final term

is added):

tγ1e = (tγ1 −
r1

c
− l
βc

)− (te + tshift)+∆(t1γ− tγ1),

where t1γ is reconstructed time from the MEG (1γ) reconstruction and tγ1 is reconstructed time

from the MEx2G reconstruction; ∆(t1γ− tγ1) is calculated using time sideband data (defined in

Section 7) and summarized in Table 6.1.

To confirm the blind box defined in Chapter 7) is large enough, we roughly estimate the time

resolution of tγ1e and tγγ . In MC, difference between reconstructed time and MC truth is fitted

with Gaussian and its sigma is quated as time resolution. Then, data/MC difference is also taken

into account. tγ1e resolution is estimated to be ∼140 ps. We also observe a long tail in the negative

region. This suggests that the blinding window should be large enough to cover most of the tail.
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Table 6.1: Time shift calculated from the time sideband

year mean (ns)
2009 −0.243
2010 −0.231
2011 −0.209
2012 −0.216
2013 −0.261

We set the window size as 1 ns, which is > 5 times larger value than this resolution. tγγ resolution

is estimated to be ∼160 ps. We also set the window size as 1 ns.
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µ+ → e+X, X→ γγDECAY SEARCH ANALYSIS

7.1 Overview

As we discussed in Chapter 6, we assume mX in the X decay vertex reconstruction. Thus the

µ+ → e+X, X → γγdecay search analysis is also performed assuming mX. A mass range of 20–

45 MeV (Section 2.3.5) is searched at an interval of 1 MeV. This interval is set small enough

not to miss signals between the interval.1 Therefore, adjacent mass bins are not statistically

independent; a single event can be observed in several bins. We also assume the lifetime of X to

be 5, 20, and 40 ps, but the lifetime difference only affects the signal efficiency.

A blind analysis is used to reduce the experimenter’s bias. It means that we determine

conditions of event selection and estimate the number of background events without looking at a

signal region. Figure 7.1 schematically shows definitions of the blind region, the signal region

and time sideband regions. As we discussed in Section 2.5, we only need to consider accidental

backgrounds. Thus, the signal region and the blind region are defined on a time surface, teγ1–tγγ
surface2. The signal region is defined at the center region of the teγ–tγγ surface as shown in red

shadow in Figure 7.1 Its box size is optimized in Section 7.4. The blind region is predefined to

be |teγ1 | < 1ns∧|tγγ| < 1ns, which is large enough to blind the signal. It is shown in blue shadow

in Figure 7.1. We also define time sideband regions A, B, and C and these regions are used as

control samples to estimate backgrounds and check the analysis method. See Section 7.2 and

Section 7.4 for the other definitions in Figure 7.1.

We adopt a cut-counting analysis for the signal search; we apply several cuts to reduce

background events as much as possible while keeping the number of signal events. Before

applying these signal selections, all the other selections including trigger effects have been already

1Effective mass resolution in the vertex reconstruction is ∼ 2.5 MeV.
2See Section 6.1.2.3 for the definitions. Hereafter we use teγ instead of teγ1
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Figure 7.1: Definitions of blind region, signal region, and time sideband regions.

applied. The number of signals and backgrounds in the signal region are simultaneously
estimated by a maximum likelihood fit using events observed in the sidebands and the

signal region (Section 7.2, Section 7.3). The confidence interval of the number of signal events

and the significance of the signal, if excess is found, are calculated in a frequentist approach.

The branching ratio (BR) of the MEx2G decay is obtained as the product of the number

of signals and a single event sensitivity (SES). SES is defined as a BR which gives 1 event

observation and is inverse of the effective number of observed muons decaying at the target. This

is explained in Section 7.6.

Finally, we open the blind region after all the preparations above are fixed and obtain the

results (Section 7.8).
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7.2 Background estimation

In this section, we discuss how we estimate the expected number of background events in the

signal region from the number of events in the sidebands. There are 8 time sideband regions (A1,2,

B1,2, C1,2,3,4) as shown in Figure 7.1. Different alphabets indicate different off-timing sidebands.

As we discussed in Section 2.5, there are three types of accidental background events: type 1,

type 2, and type 3. The numbers written in right-hand side of the each box in Figure 7.1 show

which type contributes to each sideband; A1,2 has contributions from type 2 and type 3. B1,2 has

contributions from type 1 and type 3. C1,2,3,4 has contribution from type 3.

The expected number of background events (NBG) in the signal region is given by

NBG = N1 +N2 +N3,

where N1, N2, N3 are the expected number of background events in the signal region from type 1,

type 2, and type 3, respectively. The likelihood on NBG is given by

L (NBG|NA, NB, NC)

= Poi(NA|Nexp
A )Poi(NB|Nexp

B )Poi(NC|Nexp
C ),(7.1)

where Poi(n|µ) is defined as

Poi(n|µ)= µne−µ

n!

We define NA, NB, and NC as the observed number of events in A, B, and C, respectively. For

instance, NA is sum of the number of events in A1 and A2. We also define the expected number

of NA, NB, and NC as Nexp
A , Nexp

B , and Nexp
C , respectively. Nexp

A , Nexp
B , and Nexp

C can be calculated

from N1, N2, and N3 assuming the background distribution is linear3:

Nexp
A = N2 × yC1 + yC2

yB
+N3 × yC1 + yC2

yB
(7.2)

Nexp
B = N1 × xC1 + xC2

xA
+N3 × xC1 + xC2

xA
+N2 × fescape(7.3)

Nexp
C = N3 × yC1 + yC2

yB
× xC1 + xC2

xA
+N2 × fescape × yC1 + yC2

yB
(7.4)

xA,C1,C2 and yB,C1,C2 are the size of signal regions and sideband regions defined in Figure 7.1.

fescape is a fraction of events in |tγγ| > 1ns escaping from |tγγ| ≤ 1ns whose origin is tγγ peak. This

factor is estimated to be 0.171. Its uncertainty is negligible. Figure 7.2 shows an example of the

sideband distribution. The linearity of the sideband regions are discussed in Appendix A.

The best estimate of NBG is obtained by maximizing the likelihood function defined in

Equation (7.1). The values of NBG in this search are discussed in Section 7.5 after defining

the event selection in Section 7.4. Note that, as we discuss in Section 7.3, NBG is not inferred

separately from the signal but inferred together with the signal in the search analysis.
3We confirmed that a deviation from this assumption was negligible compared with statistical uncertainties of

NA, NB, NC. The detailed discussion is described in Appendix A.
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Figure 7.2: An example of the sideband distribution. The small figure with red box shows which
part of sideband data is used to make the distribution. See Appendix A in detail.

7.3 Signal estimation with background extraction

We estimate the signal number (NMEx2G) and it is converted to the branching ratio (limit) of the

µ+ → e+X, X→ γγdecay (BMEx2G) using a normalization factor (k)4.

BMEx2G = 1
k
×NMEx2G.(7.5)

We use the following items for the estimation of the signal number:

• the number of events in time sidebands (Section 7.5)

• the normalization factor k and its uncertainty (Section 7.6.10)

• the number of events in the signal region (Section 7.8.1).

We perform a maximum likelihood fitting to estimate the number of signal. The likelihood

function Equation (7.1) is extended to include the branching ratio (BR) as a parameter and the

number of events in the signal region (Nobs) as an observable. In addition, to incorporate the

4We discuss k in Section 7.6
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uncertainty of normalization into the BR, the estimated normalization (k0) and the true value (k)

are included into the likelihood function:

L (BR, NBG,k|Nobs, NA, NB, NC,k0)(7.6)

The expected number of events (Nexp) in the signal region has four different components: three

different backgrounds (N1, N2, and N3) and signal (NS), with which BR= NS/k:

Nexp = N1 +N2 +N3 +NS.(7.7)

Using N1, N2, N3 and NA, NB, NC defined in Section 7.2, Equation (7.6) can be written as

follows:

L (BR, N1, N2, N3,k|Nobs, NA, NB, NC,k0)

= Poi(Nobs|Nexp)Poi(NA|Nexp
A )Poi(NB|Nexp

B )Poi(NC|Nexp
C )Gaus(k0|k)

= Poi(Nobs|kBR+N1 +N2 +N3)Poi(NA|Nexp
A )Poi(NB|Nexp

B )Poi(NC|Nexp
C )Gaus(k0|k).(7.8)

If BR is fixed, the number of signal can be obtained from the estimation of the normalization

factor. We define s to be the signal number assuming the normalization factor to be k0 with

satisfying BR= s/k0 and NS = rs where r = k/k0. Dividing by a factor k0 (a constant value) does

not change the form of the likelihood function and gives:

L (s, N1, N2, N3, r|Nobs, NA, NB, NC,k0)

= Poi(Nobs|rs+N1 +N2 +N3)Poi(NA|Nexp
A )Poi(NB|Nexp

B )Poi(NC|Nexp
C )Gaus(r0|r),(7.9)

where r0 is defined by r0 = k0/k0(= 1), respectively.

We assume a Gaussian distribution for the normalization PDF:

Gaus(r0|r)∼N (1|r,σ2
r ),

where σr is the relative uncertainty of k (Table 7.11) and N (x|µ,σ2) is expressed as

N (x|µ,σ2)= 1p
2πσ

e−
(x−µ)2

2σ2 .

Once we measure Nobs, NA, NB, NC,k0, the best estimated values of the parameter set s, N1,

N2, N3, r are obtained by maximizing the likelihood function. For the MEx2G search, only s is an

interesting parameter, while the others are regarded as nuisance parameters. Once s is obtained,

BR is calculated by BR= s/k0.
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Figure 7.3: (a) Signal (MC) for (20 MeV, 20 ps) and (b) BG (sideband data) event distributions as a
function of time differences.

7.4 Event selection

7.4.1 Cut optimization

The purpose of this optimization is to find the threshold, which maximizes experimental outcomes

without assuming the signal number. For this purpose, Punzi’s sensitivity [105] is used as a

criterion of the cut optimization. It requires no assumption on signal counts whether 0 or not.

The sensitivity σ−1
Punzi is defined as

σ−1
Punzi =

εsignal

b2 +2a
√

NBG +b
√

b2 +4a
√

NBG +4NBG

,(7.10)

where a is significance and b is power, which is set to the same value as confidence level (CL).

εsignal is the signal efficiency, and NBG is the number of the background events. a and b should

be defined before the analysis, and we set a = 3,b = 1.28 (corresponds to 90%CL). The task is to

find the optimal cuts to maximize σ−1
Punzi. In general, εsignal should be large and NBG should be

small to maximize σ−1
Punzi. The detail procedure is explained in Section 7.4.3.

Figure 7.3 shows time distribution of signal and background events. MC samples are used as

the signal distribution, and time sideband events of data are used as the background distribution.

All the other selections including trigger effects are already applied for these distributions.

7.4.2 Variables used for the event selection

At first, we set positron energy selection to be ±1 MeV, which corresponds to PX = Pe. The equiv-

alent selection is applied when we count Michel events for normalization (Section 7.6.1). Then
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Figure 7.4: Distribution of variables used for signal selection for (20 MeV, 20 ps). Both signal
(MC) in red and background (sidebands) in blue are shown in the figures. Each distribution is
normalized. The black lines are optimized thresholds.

six variables are used for the signal selection and these variables are optimized. Distributions of

these variables for both signal and background at two parameter sets ((20 MeV, 5 ps) and (45 MeV,

40 ps)) are shown in Figure 7.4 and Figure 7.5. The optimized thresholds are shown in the black

lines.

uv distance uv distance is defined as the distance between reconstructed 2γs on the LXe inner

face. It is given by √
(uγ1 −uγ2)2 + (vγ1 −vγ2)2,

where uγ1,2 is reconstructed u position of each γ and vγ1,2 is reconstructed v position of each

γ. Distributions of signal and background events are shown in the top left figure in Figure 7.4

and Figure 7.5. The uv distance becomes large for the higher mass because the opening angle

between 2γs becomes large for the higher mass as shown in Figure 2.8. Cut-off at 20 cm in the

background distribution comes from one of the 2γ reconstruction conditions (Section 5.3.4.3).

energy sum Energy sum is defined as total energy of the three particles. It is given by

Eγ1 +Eγ2 +Ee+ .
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Figure 7.5: Distribution of variables used for signal selection for (45 MeV, 20 ps). Both signal
(MC) in red and background (sidebands) in blue are shown in the figures. Each distribution is
normalized. The black lines are optimized thresholds.

It should be equal to the mass of muon from the energy conservation. Distributions of signal and

background events are shown in the top center figure in Figure 7.4 and Figure 7.5. The peak

value of the signal distribution corresponds to the mass of muon.

momentum sum Momentum sum is defined as sum of the momentum of three particles. It is

given by

~Pe+ +~Pγ1 +~Pγ2 .

The absolute value should be 0 from the momentum conservation. Distributions of signal and

background events are shown in the top right figure in Figure 7.4 and Figure 7.5.

vertex χ2 Vertex χ2 is calculated in Equation (6.4) after the vertex reconstruction. Distributions

of signal and background events are shown in the bottom left figure in Figure 7.4 and Figure 7.5.

tγ1e tγ1e is time difference between γ1 and e+. It is defined in Equation (6.8). Distributions of

signal and background events are shown in the bottom center figure in Figure 7.4 and Figure 7.5.
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tγγ tγγ is time difference between 2γs. It is defined in Equation (6.7). Distributions of signal

and background events are shown in the bottom right figure in Figure 7.4 and Figure 7.5.

Figure 7.3 is a two-dimensional plot of tγ1e and tγγ shown in Figure 7.4.

7.4.3 Optimization procedure

We optimize thresholds for the variables in two steps. As we discuss below, this procedure enables

us to determine selections while reducing a possible bias on the selection. Generally, there exists

only 1 (or 0) background event around the optimal point (because we try to do so). Since we use

the data itself for the optimization, the optimal cut may suffer from a bias coming from the low

statistics.

We check the signal and background distributions of six variables as shown in Figure 7.4 and

Figure 7.5. In order to reduce the bias, we determine thresholds independently at the first step to

use larger statistics. However, it gives a suboptimal selection. Therefore we select one variable,

which has the maximum discriminating power and determine its threshold after applying all

the other selections at the second step. The vertex χ2 gives the highest discriminating power

measured with the ROC curve5.

First step Thresholds of five variables except for vertex χ2 were determined independently.

Figure 7.6–Figure 7.10 show how to determine thresholds for each variable. The left plots show

signal (in red) and background (in blue) distributions of each variable and black lines in these plots

are determined thresholds. The right plots in Figure 7.6 and Figure 7.7 show Punzi’s sensitivity

as a function of the lower and upper thresholds. The right plots in Figure 7.8, Figure 7.9, and

Figure 7.10 are the cumulative distributions of the corresponding left plots. Black curves in

these plots show Punzi’s sensitivity as a function of threshold. The number of background in

the Punzi’s calculation in Equation (7.10) is replaced with a background efficiency defined is

by a ratio between before and after applying a selection under consideration, where number of

background is normalized.

First, we set a threshold for tγγ to be 1 ns (maximum value) because the sensitivity in

Figure 7.10 (b) does not change so much compared with the other variables. Then, a threshold

for uv distance is fixed where it gives the maximum Punzi’s sensitivity. Concerning the other

variables, we loosen the thresholds by 10%–30% from the point giving the maximum sensitivity

in order to get enough events to estimate the number of background events.

5ROC stands for Receiver Operating Characteristic, which is calculated from true positive rate and false-positive
rate with scanned thresholds.
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(a)
 uv distance (cm)

0 50 100 1500
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

before cut

(5042, normalized)
Signal

(99741, normalized)
BG

before cut

 energy sum (GeV)
0.08 0.09 0.1 0.110

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

before cut

(5042, normalized)
Signal

(99741, normalized)
BG

before cut

 |momentum sum| (GeV)
0 0.005 0.01 0.015 0.02 0.025 0.030

0.02

0.04

0.06

0.08

0.1

before cut

(5042, normalized)
Signal

(99741, normalized)
BG

before cut

2χ vertex 
0 50 100 150 2000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

before cut

(5042, normalized)
Signal

(99741, normalized)
BG

before cut

 (s)e - t1γ t
1− 0.5− 0 0.5 1

9−10×0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

before cut

(5042, normalized)
Signal

(9450, normalized)
BG

before cut

 (s)2γ - t1γ t
1− 0.5− 0 0.5 1

9−10×0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
before cut

(5042, normalized)
Signal

(67629, normalized)
BG

before cut
(b)

 uv distance (cm)
0 50 100 1500

0.2

0.4

0.6

0.8

1

before cut (integrated)before cut (integrated)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

modified Punzi

 lower (cm)
0 50 100 150

 u
pp

er
 (c

m
)

0

20

40

60

80

100

120

140

160
modified Punzi

 energy sum (GeV)
0.08 0.09 0.1 0.110

0.2

0.4

0.6

0.8

1

before cut (integrated)before cut (integrated)

0

0.02

0.04

0.06

0.08

0.1

modified Punzi

 lower (GeV)
0.08 0.09 0.1 0.11

 u
pp

er
 (G

eV
)

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

modified Punzi

Figure 7.7: (a) signal and background distributions and (b) Punzi’s sensitivity as a function of
upper and lower threshold for energy sum. (20 MeV, 20 ps) case is shown as an example.
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Figure 7.9: (a) signal and background distributions and (b) integrated spectrum of (a) and Punzi’s
sensitivity as a function of threshold for tγ1e . (20 MeV, 20 ps) case is shown as an example.
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Figure 7.10: (a) signal and background distributions and (b) integrated spectrum of (a) and
Punzi’s sensitivity as a function of threshold for tγγ . (20 MeV, 20 ps) case is shown as an example.
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7.4. EVENT SELECTION

7.  decay search analysis               Mitsutaka Nakao ★ Page:      /44μ+ → e+X, X → γγ

Get continuous distribution using KDE
●chi2以外でcutして, time sidebandのeventをchi2の関数として表示. 

●このままだと, eventが離散化していて最適化時の変数空間が連続にならずやりづら
い.→kernel densitiy estimation (KDE)で滑らかな分布にする(赤線). 

●積分する(青線). 

●与えられたthresholdにおける, 各time windowのBG数を「連続的に」得た.

129

2χ vertex 
0 5 10 15 200

0.5

1

1.5

2

2.5

3

Time windowA

hTWAchisqMLfitBG

Entries  36

Mean    14.04

RMS     3.726

Time windowA

2χ vertex 
0 5 10 15 200

0.2

0.4

0.6

0.8

1

Time windowB

hTWBchisqMLfitBG

Entries  8

Mean    13.47

RMS     5.005

Time windowB

2χ vertex 
0 5 10 15 200

0.5

1

1.5

2

2.5

3

3.5

4

Time windowC

hTWCchisqMLfitBG

Entries  69

Mean    13.91

RMS     4.537

Time windowC

2χ vertex 
0 5 10 15 200

5

10

15

20

25

30

35

# of events below the threshold (TWA)

hIntTWAchisqMLfitBGKDE

Entries  201

Mean    18.41

RMS     4.233

# of events below the threshold (TWA)

2χ vertex 
0 5 10 15 200

1

2

3

4

5

6

7

8

# of events below the threshold (TWB)

hIntTWBchisqMLfitBGKDE

Entries  201

Mean    17.76

RMS     4.619

# of events below the threshold (TWB)

2χ vertex 
0 5 10 15 200

10

20

30

40

50

60

# of events below the threshold (TWC)

hIntTWCchisqMLfitBGKDE

Entries  201

Mean    18.18

RMS     4.512

# of events below the threshold (TWC)

hOptIntchisqMLfitSig

Entries  201

Mean    14.32

RMS     6.159

2χ vertex 
0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Efficiency (signal, integrated)

hOptIntchisqMLfitSig

Entries  201

Mean    14.32

RMS     6.159

Efficiency (signal, integrated)

2χ vertex 
0 5 10 15 200

1

2

3

4

5

6

7

Efficiency (BG, integrated)

hOptIntchisqMLfitBG2

Entries  201

Mean    18.41

RMS     4.233

Efficiency (BG, integrated)

2χ vertex 
0 5 10 15 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Efficiency (Punzi, integrated)

hOptIntchisqMLfitPunzi2

Entries  201

Mean     10.8

RMS     6.377

Efficiency (Punzi, integrated)

Figure 7.11: Top: event distributions after event selections except for vertex χ2. Three figures
correspond to time sidebands. Red curves are modeled curves using KDE. Bottom: cumulative
curves of the red curves.

Second step After applying all the selections except for vertex χ2, event distribution in the

time sideband is modeled using kernel density estimation method [106, 107] to get its PDF. This

modeling also contributes to reduce the bias due to low statistics. Figure 7.11 shows the KDE

modeling for each time sideband. The red curves are modeled curves and the blue curves are

cumulative ones. These are used to calculate the number of background events in the signal

region as a function of vertex χ2. Figure 7.12 (b) shows the expected number of background events

in the signal region estimated from the time sidebands’ modeling. Figure 7.12 (a) shows signal

efficiency. Figure 7.12 (a) and (b) give Punzi’s sensitivity as shown in Figure 7.12 (c). A threshold

for vertex χ2 is determined to be the point where it gives the maximum sensitivity in this plot.

These optimized thresholds are averaged over assumed lifetimes to reduce bias. Then, mass-

dependent thresholds are determined by performing the optimization on each 5 MeV; for instance,

thresholds for mX = 23,24,25,26,27MeV are the same ones which is optimized at mX = 25MeV.

As shown in Figure 7.13 (c), signal ratio compared with that without applying the signal

selection is ∼50% for 20 MeV. In Figure 7.13, six selection conditions are applied subsequently.

On the other hand, the number of BG is reduced to (at least) a factor of ∼O (10−5) as shown in

Figure 7.13 (b). Note that timing selections is not applied on Figure 7.13 (b) since no sideband

events are survived by applying these selections.
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Figure 7.12: (a) signal efficiency, (b) the number of background events in the analysis region, and
(c) Punzi as a function of a threshold for vertex χ2. (20 MeV, 20 ps) case is shown as an example.
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7.4. EVENT SELECTION
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Figure 7.13: (a) Efficiency of signal (in red) and BG (in blue). (b) and (c) are zoomed-in plot of (a).
The signal efficiency is estimated using the signal MC and the BG efficiency is estimated using
time sideband events. (20 MeV, 20 ps) case is shown as an example. In this plot, events just after
all the othere selections is set to 1 ("Before").
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Table 7.1: Optimized thresholds

uv distance (cm) energy sum (MeV)
momentum sum (MeV) vertex χ2 tγ1e (ns) tγγ (ns)

low up low up
20 MeV

(20 – 22 MeV) 47.2 67.5 99.7 109 7.05 4.93 0.498 1.00
25 MeV

(23 – 27 MeV) 58.4 86.1 100 109 7.35 5.71 0.518 1.00
30 MeV

(28 – 32 MeV) 71.2 104 99.7 109 7.05 7.79 0.498 1.00
35 MeV

(33 – 37 MeV) 82.4 129 96.0 109 12.3 7.37 1.00 1.00
40 MeV

(38 – 42 MeV) 94.1 145 94.9 109 14.6 7.73 1.00 1.00
45 MeV

(43 – 47 MeV) 105 142 91.2 109 21.1 15.1 1.00 1.00

7.4.4 Summary of event selection

Table 7.1 summarizes thresholds of variables used for the signal selection. The same threshold

sets are used for the same mass regardless of the lifetime.
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7.5. BACKGROUND EXPECTATION USING ONLY SIDEBANDS

Table 7.2: Definition of sideband and signal regions

mass (MeV) xC1 (ns) xA (ns) xC2 (ns) yC1 (ns) yB (ns) yC2 (ns)
20 MeV

(20 – 22 MeV) 2.5 2.000 2.5 2.5 0.996 2.5
25 MeV

(23 – 27 MeV) 2.5 2.000 2.5 2.5 1.036 2.5
30 MeV

(28 – 32 MeV) 2.5 2.000 2.5 2.5 0.996 2.5
35 MeV

(33 – 37 MeV) 2.5 2.000 2.5 2.5 2.000 2.5
40 MeV

(38 – 42 MeV) 2.5 2.000 2.5 2.5 2.000 2.5
45 MeV

(43 – 47 MeV) 2.5 2.000 2.5 2.5 2.000 2.5

7.5 Background expectation using only sidebands

We estimate the number of background events in the signal region based on the methods discussed

in Section 7.2 with the event selections determined in Section 7.4. Definitions of sideband and

signal regions are summarized in Table 7.2. The numbers of events in the sidebands are counted

and the number of background events in the signal region is estimated and summarized in

Table 7.3. In the last column of Table 7.3, we listed the best fitted values of the expected

background in the signal region and their statistical uncertainties. These values depend on

sideband events, that is, the box size of the sidebands. As discussed in Section 7.2 and Appendix A,

systematic uncertainties related to the scale method (the use of Equation (7.2)–(7.4)) and the

escape factor are negligible. Systematic uncertainty of the normalization factor is taken into

account when estimating signal numbers.
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Table 7.3: The number of events in sidebands and the expected number of BG in signal region

mass (MeV)
sideband expected NBG

A1 A1 B1 B2 C1 C2 C3 C4 in signal region
20 0 0 0 0 0 0 1 0 0.048+0.202

−0.046
21 0 0 0 0 1 1 0 1 0.146+0.198

−0.084
22 1 0 0 0 2 2 0 1 0.292+0.211

−0.140
23 2 1 0 0 1 1 0 1 0.622+0.425

−0.330
24 1 1 0 0 0 1 0 0 0.414+0.346

−0.260
25 1 1 0 0 0 2 0 1 0.414+0.346

−0.261
26 0 0 0 0 0 1 1 1 0.150+0.189

−0.091
27 0 0 0 0 1 0 0 0 0.050+0.200

−0.049
28 0 0 0 0 0 1 0 0 0.048+0.202

−0.046
29 0 0 0 0 0 1 0 0 0.048+0.202

−0.046
30 0 0 0 0 0 0 0 0 0.000+0.170

−0.000
31 0 0 0 0 0 1 0 0 0.048+0.202

−0.046
32 0 0 0 0 0 0 0 0 0.000+0.170

−0.000
33 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
34 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
35 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
36 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
37 1 0 0 0 0 0 0 0 0.400+0.517

−0.301
38 0 0 0 0 1 0 0 1 0.168+0.183

−0.105
39 0 0 0 0 0 0 0 1 0.084+0.201

−0.084
40 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
41 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
42 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
43 0 0 0 0 0 1 0 0 0.084+0.201

−0.084
44 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
45 0 0 0 0 0 0 0 0 0.000+0.210

−0.000
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7.6. NORMALIZATION AND SINGLE EVENT SENSITIVITY

7.6 Normalization and single event sensitivity

To calculate the branching ratio of the MEx2G mode, the number of muon decays effectively

measured during the data taking is used. We use Michel e+ events for this normalization. The

number of Michel events are counted using a pre-scaled dedicated trigger during the physics

data taking; signal events and Michel events were taken at the same time with different trigger

scalings. The Michel normalization is beneficial for the following reasons. First, systematics

coming from the beam are canceled. Instability of the beam is included in both of the Michel

trigger events and the µ+ → e+γ trigger. Moreover, we do not need to know µ+ stopping rate nor

live DAQ time. Second, most of the systematics coming from e+ detection are also canceled. The

absolute value of e+ efficiency is not needed because e+ is required in both events. The number of

Michel events is given by

NMichel = Nµ×BMichel × fMichel ×
1

PMichel ×Pcorrection
×εMichel,(7.11)

where

NMichel the number of observed Michel events.

Nµ the number of stopped µ+.

BMichel branching ratio of the Michel decay (∼ 1).

fMichel branching fraction of the selected energy region.

PMichel prescaling factor of the Michel trigger (= 107).

Pcorrection correction factor of PMichel. It depends on the beam intensity.

εMichel the overall efficiency for Michel events. Its detail definition comes later.

The number of signal MEx2G events is given by

NMEx2G = Nµ×BMEx2G × 1
PMEG

×εMEx2G,(7.12)

where

NMEx2G the number of observed signal MEx2G events

BMEx2G branching ratio of the MEx2G decay (unknown).

PMEG prescaling factor of the µ+ → e+γ trigger (= 1).

εMEx2G the overall efficiency for MEx2G events. Its detailed definition comes later.
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A normalisation factor k is defined as follows (the same equation as Equation (7.5)):

BMEx2G = 1
k
×NMEx2G.(7.13)

Thus, using Equation (7.11), (7.12), and (7.13), the normalisation factor k’s measured value k0

can be calculated as follows:

k0 = NMichel ×
1

BMichel
× 1

fMichel
× PMichel

PMEG
×Pcorrection ×

εMEx2G

εMichel
.(7.14)

Detailed definition of the efficiencies Efficiencies are written down using conditional prob-

abilities. Detection of a particle means that the particle is in geometrical acceptance, triggered,

and reconstructed. εMichel is given by

εMichel = P(e+detected)

= P(e+ ∈ acceptance)×P(e+ triggered, e+ reconstructed|e+ ∈ acceptance).

εMEx2G is given by

εMEx2G

= P(e+detected,2γdetected,selected)

= P(e+ ∈ acceptance)

× P(e+ triggered, e+ reconstructed,2γ ∈ acceptance,γtriggered,2γreconstructed,

DM− triggered,selected|e+ ∈ acceptance)

= P(e+ ∈ acceptance)×P(e+ triggered, e+ reconstructed|e+ ∈ acceptance)

× P(2γ ∈ acceptance,γtriggered,2γreconstructed|e+ ∈ acceptance)

× P(DM− triggered,selected|
e+,2γ ∈ acceptance, e+ triggered, e+ reconstructed,γtriggered,2γreconstructed)

= P(e+ ∈ acceptance)×P(e+ triggered, e+ reconstructed|e+ ∈ acceptance)

× P(2γ ∈ acceptance,γtriggered,2γreconstructed|e+ ∈ acceptance)

× P(DM− triggered|
e+,2γ ∈ acceptance, e+ triggered, e+ reconstructed,γtriggered,2γreconstructed)

× P(selected|e+,2γ ∈ acceptance, e+ triggered,

e+ reconstructed,γtriggered,2γreconstructed,DM− triggered)

= εe+ ×εγ×εDM ×εselection
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where

εe+ ≡ P(e+ ∈ acceptance)×P(e+ triggered, e+ reconstructed|e+ ∈ acceptance)

εγ ≡ P(2γ ∈ acceptance,γtriggered,2γreconstructed|e+ ∈ acceptance)

εDM ≡ P(DM− triggered|e+,2γ ∈ acceptance,

e+ triggered, e+ reconstructed,γtriggered,2γreconstructed)

εselection ≡ P(selected|e+,2γ ∈ acceptance, e+ triggered,

e+ reconstructed,γtriggered,2γreconstructed,DM− triggered)

εe+ positron efficiency

εγ gamma efficiency

εDM direction match efficiency

εselection analysis selection efficiency

In summary, the normalization factor k can be written as follows from Equation (7.14):

k0 = NMichel(7.15)

× 1
BMichel

× 1
fMichel

× PMichel

PMEG
×Pcorrection

× εe+

εMichel
× εγ

× εDM

× εselection

We will estimate each component from the next sections.

7.6.1 The number of observed Michel events

All the runs are divided into 8 periods. A different year correspond to different run periods.

Within the same year, runs are divided in case the beam condition or trigger condition is different.

2009 is divided into 2 periods because of different (beam) degrader thickness. 2010 and 2011 are

divided into 2 periods, respectively because of different γ veto trigger settings (see Section 5.3.4

for detail). The number of Michel events is counted period by period.

Figure 7.14 is e+ time distribution of Michel triggered and high quality track events defined

in Section 4.1.6. Triggered Michel events have a peak in the time distribution and its region
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Figure 7.14: Timing distribution of Michel positrons for all years in the energy range of 50 MeV
to 56 MeV.

Table 7.4: The number of observed Michel events. Statistical error is assgined to each value (
p

N
is assigned for N).

mX 20 25 30 35 40 45
Ee+ (MeV) 50–56 48.9–50.9 47.6–49.6 46.0–48.0 44.3–46.3 42.2–44.2

2009a 11750.9 7258.8 5670.3 3040.3 1713.3 469.0
2009b 6740.7 4111.5 3285.0 1774.5 1001.9 256.9
2010a 1506.9 870.5 676.0 319.6 155.9 9.1
2010b 38396.7 21371.4 15294.7 7326.9 3517.7 776.9
2011a 32696.0 18193.2 13041.5 6102.9 2848.3 670.2
2011b 25151.7 13928.0 9887.1 4716.9 2279.5 505.9
2012 75812.3 43114.7 31800.9 15421.4 7488.4 1711.4
2013 53841.9 31666.7 23794.0 12276.4 6235.2 1394.0
Total 245897.1 140514.8 103449.5 50978.8 25240.1 5793.5

is defined by −17.5 ns< te < 17.5 ns6 (blue broken lines). This region includes an accidental

background. Thus the number of Michel events is estimated from time sideband (25 ns < t < 125

ns) and subtracted from the Michel region. The blue regions in Figure 7.14 are selected events.

The red line is the estimated level of accidental background.

The results are summarized in Table 7.4. The energy region of 50–56 MeV is the same

definition as the analysis of µ+ → e+γ decay. We confirm the numbers of Michel events in this

energy region are consistent with the results reported in Ref. [6].

6+ 7 ns shifted for 2010.
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(Theory × Acceptance) ⊗ Response
Error function Double gaussian

Theory ⊗ Response

Fitting 
function

Acceptance

Response

T.Kinoshita, A.Sirlin, ”Radiative corrections 
to Fermi interactions.” Phys. Rev. 113(6), 
1652–1660 (1959).

(a
.u

.)

Figure 7.15: An example of the Michel spectrum (e+) in 2009. A function in red is fitted to the
histogram.

7.6.2 Fraction of Michel events

fMichel is a fraction of Michel spectrum (e+) within a certain energy range. A Michel spectrum

used in this calculation is shown in Figure 7.15. This spectrum is made by applying the same

selection as Section 7.6.1. The red solid line is a function fitted to the spectrum. A fitting

function corresponds to a polarized Michel spectrum, which is modeled by a theoretical spectrum

multiplied by an acceptance function and convoluted with a resolution function.:

(Theory×Acceptance)⊗Response.

The theoretical spectrum comes from Ref. [64]. The acceptance function is defined as

Acceptance
(
Etrue

e
)= 1+erf

(
Etrue

e −µaccp
2σacc

)
2

.

We use double Gaussian as a response function. A positron energy range is selected depending

on mX. Thus a fraction of the selected energy range of grey curve (Theory⊗Response) is fMichel.

Our fitting range is extended to 40–56 MeV to include lower energy contribution. The results are

111



CHAPTER 7. µ+ → e+X, X→ γγDECAY SEARCH ANALYSIS

Table 7.5: Fractions of Michel events

mX 20 25 30 35 40 45
Ee+ (MeV) 50–56 48.9–50.9 47.6–49.6 46.0–48.0 44.3–46.3 42.2–44.2

2009 10.4±0.01% 7.2±< 0.01% 7.2±< 0.01% 7.1±< 0.01% 7.0±< 0.01% 6.8±< 0.01%
2010 10.4±0.01% 7.2±< 0.01% 7.2±< 0.01% 7.1±< 0.01% 7.0±< 0.01% 6.8±< 0.01%
2011 10.3±< 0.01% 7.2±< 0.01% 7.2±< 0.01% 7.1±< 0.01% 7.0±< 0.01% 6.8±< 0.01%
2012 10.5±< 0.01% 7.2±< 0.01% 7.2±< 0.01% 7.1±< 0.01% 7.0±< 0.01% 6.8±< 0.01%
2013 10.4±0.01% 7.2±< 0.01% 7.2±< 0.01% 7.1±< 0.01% 7.0±< 0.01% 6.8±< 0.01%

Table 7.6: Prescale correction factor [96]

year correction factor relative uncertainty
2009 1.109 0.90%
2010 1.125 0.88%
2011 1.108 0.90%
2012 1.125 0.88%
2013 1.12 0.89%

summarized in Table 7.5. Uncertainties from the fitting, which is statistical uncertainties, are

assigned as systematic uncertainties.

7.6.3 Prescale factor and its correction

PMichel

PMEG
×Pcorrection

PMichel = 107 and PMEG = 1 are the prescale factors of Michel trigger and MEG trigger, respectively.

PMichel needs a correction in order to account for pileup events [96]. This factor depends on the

beam intensity and is estimated year by year summarized in Table 7.6.

7.6.4 Relative positron efficiency

Relative e+ efficiency between the MEx2G e+ and the Michel e+ is given by

εe+

εMichel

By taking a ratio between these two efficiencies, we do not need to estimate absolute values of e+

efficiency. This is one of the advantages of the Michel normalization. However, a few corrections

are needed depending on mX. In the µ+ → e+γ analysis, a similar correction was applied [96]. Thus

we make use of it and the difference between the µ+ → e+γ analysis and µ+ → e+X, X→ γγ analysis

is taken into account for an e+ energy range of 50–56 MeV (mX = 20 MeV).

Figure 7.16 illustrates how to estimate the relative e+ efficiency. In the µ+ → e+γanalysis

(top plot in Figure 7.16), the signal e+ energy is fixed at 52.8 MeV. There is a difference between

εMEG and εMichel because of their acceptances due to different e+ energy. Thus we need to correct
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Table 7.7: Relative e+ efficiencies

mX(MeV) 20 25–45
2009 1.023±0.014 1
2010 0.999±0.013 1
2011 1.005±0.013 1
2012 1.021±0.013 1
2013 1.024±0.014 1

as follows:

εMEG

εMichel
= A(52.8)× (52.8−50)∫ 52.8

50 A(E)dE
∼ 1.15,

where A(E) is acceptance curve as a function of e+ energy. This acceptance curve is estimated

from the fitting of the Michel spectrum (Section 7.6.2).

In the µ+ → e+X, X→ γγ case, the correction can differ depending on the assumed mX. There

are two cases: when Ee+ is close to the Michel edge (middle plot in Figure 7.16), the similar

correction like MEG [96] is needed. The only difference is signal energy. Therefore, the correction

is modified to be

εe+

εMichel
= A(Ee+)× (52.8−50)∫ 52.8

50 A(E)dE

= εMEG

εMichel
× A(Ee+)

A(52.8)
.(7.16)

In the second case, when Ee is far from the Michel edge (bottom plot in Figure 7.16), no

correction is needed, assuming acceptance curves in the selected region are the same. Thus, the

correction is

εe+

εMichel
= 1(7.17)

Table 7.7 summarizes e+ relative efficiencies for each mX. The uncertainty comes from

acceptance curve fitting [96].
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50 52.8
MeV

Acceptance 
curve: A(E )

∫
52.8

50
A(E )dE

ϵMEG
 (averaged) ϵMichel

50 52.8
MeV

Acceptance 
curve: A(E )

∫
52.8

50
A(E )dE

ϵe
 (averaged) ϵMichel

Ee − 1
MeV

Acceptance 
curve: A(E )

∫
Ee+ 1

Ee−1
A(E )dE

ϵe
 (averaged) ϵMichel

Ee + 1
Ee

MEG

MEx2G:  
 is close to the Michel edgeEe

MEx2G:  
 is far from the Michel edgeEe

Figure 7.16: How to estimate relative e+ efficiencies. An averaged line of εMichel corresponds to
the integrated area (in red) divided by its energy range (not to accurate, just to illustrate the
idea).
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Figure 7.17: Difference between e+ reconstructed time and truth time (MC).

Missing turn inefficiency Another item we need to take into account for the e+ efficiency

is inefficiency coming from missing turns. Some e+ tracks are reconstructed with one or more

missing turns. In these cases, the track length is mistakenly estimated by ∼ 2.5 ns (for one

missing turn). Such e+s are counted as Michel e+s. However, they do not pass the signal selection

because the analysis window is narrower than 2.5 ns (Section 7.6.7). Therefore, the number of

Michel events should be corrected by a factor less than 1 according to the missing turn inefficiency.

This inefficiency becomes larger for e+ with smaller energy because of less tracking quality.

We estimate the inefficiency using the signal MC. Figure 7.17 shows the difference between

e+ reconstructed time and MC truth time. Missing turn events have peak shifted by ∼ 2.5 ns

from the main peak. The purpose here is to estimate a fraction of these missing turn events

with respect to all events. First, the same e+ selection is applied to the MC events as the Michel

counting. Then the accidental coincident events are subtracted shown in the small figure in

Figure 7.17. The final inefficiency is calculated by setting threshold as a half of 1 turn (1.25 ns).

Inefficiency= 1− N1

N1 +N2 +N3 +· · ·(7.18)

MC events are generated with the several mass of X setups. Each setup has different e+ energy

and all the results are summarized in Figure 7.18. Larger error in the lower e+ energy is due to

limited statistics. By fitting an energy dependent function, p0 + p1p
E

, one can get the missing turn

inefficiency at selected e+ energy shown in Table 7.8. The estimated inefficiency is reasonable,

compared with previous results in the MEG analysis [97]. The relative positron efficiency is
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Missing turn inefficiency

Figure 7.18: Missing turn inefficiency as a function of e+ energy.

Table 7.8: Missing turn inefficiency. Uncertainties show the fitting errors.

mX (MeV) e+ energy (MeV) inefficiency (%) uncertainty (%)
45 43.2477 11.21 1.16
40 45.2589 9.22 0.81
35 47.0334 7.57 0.51
30 48.5714 6.22 0.29
25 49.8728 5.12 0.17
20 50.9375 4.26 0.2

multiplied by the inefficiency.

7.6.5 γ efficiency

This is described in Section 5.3.4 and summarized in Figure 5.20.
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All efficiency (20 ps)All efficiency (20 ps)Figure 7.19: DM efficiency (20 ps). The error bar only includes statistical uncertainty. Other
systematic uncertainties are included in the estimation of the normalization factor (Section 7.6.9).

7.6.6 Direction match efficiency

εDM ≡ P(DM− triggered|e+,2γ ∈ acceptance,

e+ triggered, e+ reconstructed,γtriggered,2γreconstructed)

The direction match (DM) trigger is prepared to select back-to-back events of µ+ → e+γdecay. For

the back-to-back events like µ+ → e+γ , there are correlations between hit position of γ and e+.

Look-up tables in which PMT ID of the LXe detector and matched ID and z of the TC detector

are listed are prepared. Only matched events are triggered to reduce accidental backgrounds.

The trigger efficiency including the DM trigger for µ+ → e+γdecay was, for example, 97% in 2013.

However, γ and e+ in µ+ → e+X, X→ γγare not back-to-back. Thus the direction match trigger

efficiency for µ+ → e+X, X→ γγbecomes worse.

We used two different look-up tables in the 5-year data taking. One is used in 2009 and

2010, and the other was used after 2010. In the later setup, a multi buffer read-out scheme is

implemented [6, 73], which enables us to loose the direction match conditions. We estimated the

DM efficiency using the signal MC and look-up tables. In MC, we check if PMT of LXe with the

highest number of photoelectrons and TC hit position ID (φ, z) of generated events matches the

direction match condition. Figure 7.19 shows the DM efficiency as a function of mX for 20 ps.
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Figure 7.20: Selection efficiency (20 ps). The error bar only includes statistical uncertainty. Other
systematic uncertainties are included in the estimation of the normalization factor (Section 7.6.9).

These values are weighted averaged efficiency using normalization of each year. Results of 5 ps

and 40 ps are also summarized in Appendix B.

7.6.7 Selection efficiency

εselection ≡ P(selected|e+,2γ ∈ acceptance, e+ triggered,

e+ reconstructed,γtriggered,2γreconstructed,DM-triggered)

The selection conditions determined in Section 7.4 are applied. The selection efficiency is

estimated using the signal MC and summarized in Figure 7.20 for 20 ps. These values are

weighted averaged efficiency using normalization of each year. No significant difference among

lifetimes is observed and the results of 5 ps and 40 ps are also summarized in Appendix B.

As discussed in Section 7.4, selection conditions depend on different mass assumptions; the

conditions are optimized for each mass. Thus the mass dependence is not monotonic. In particular,

for mX = 45 MeV, the number of background events is smaller than others and looser selection

conditions are applied compared with other masses, which gives the highest selection efficiency

close to ∼ 70%.

118



7.6. NORMALIZATION AND SINGLE EVENT SENSITIVITY
MeV

20 25 30 35 40 45

%

0.5

1

1.5

2

2.5

3

Gamma efficiency (20 ps)Gamma efficiency (20 ps)

MeV
20 25 30 35 40 45

%

50

60

70

80

90

DM efficiency (20 ps)DM efficiency (20 ps)

MeV
20 25 30 35 40 45

%

50

55

60

65

70

Selection efficiency (20 ps)Selection efficiency (20 ps)

MeV
20 25 30 35 40 45

%

0.2

0.4

0.6

0.8

1

1.2

1.4

All efficiency (20 ps)All efficiency (20 ps)

Figure 7.21: Overall efficiency (20 ps). The error bar only includes statistical uncertainty. Other
systematic uncertainties are included in the estimation of the normalization factor (Section 7.6.9).

In the previous study [62], selection conditions were fixed regardless of mX. The efficiency

was ∼50% at 20 MeV and it decreased as a function of mass down to ∼20% at 45 MeV. As we

discuss in Section 7.9, this (at most) ∼ 3 times improvement of the selection efficiency gives the

better single event sensitivity than expected from statistics.

7.6.8 Overall efficiency

The overall signal efficiency, which is defined by εγ×εDM ×εselection, is shown in Figure 7.21. This

estimation is based on the signal MC. These values are weighted averaged efficiencies using

normalization of each year. No large difference among lifetimes is observed and the results of 5

ps and 40 ps are also summarized in Appendix B. mX dependence comes mainly from the gamma

acceptance (Section 5.3.4) and the DM efficiency (Section 7.6.6).
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7.6.9 Uncertainties on normalization

Uncertainties on the normalization factor are summarized in Table 7.9 for 20 ps. Systematic

uncertainty of the signal efficiency is dominant. Statistical one comes from the MC statistics.

In 2013, for τ= 20ps, it is 9.3% for 20 MeV and 17% for 45 MeV. The systematic uncertainty is

further factorized as shown in Table 7.10. Among them, γ detection efficiency (Section 5.3.4.5)

and MC smearing are major components. Other systematic uncertainties including the direction

match trigger efficiency and the selection efficiency are included in the MC smearing. In the

reconstruction chapters (Chapter 4, Chapter 5), we estimate smearing parameters to reproduce

data resolution using MC. To estimate the effect of its systematic uncertainty on the signal

efficiency, we prepare several MC settings smeared by mean, mean + systematic uncertainty, and

mean − systematic uncertainty of each smearing parameter. Then, we define difference of the

signal efficiency from the mean as systematic uncertainty of the signal efficiency originating from

MC smearing parameter.

In the signal estimation (Section 7.3, Section 7.8), the uncertainties (both systematic and

stasitical ones) are assigned as systematic uncertainties of the normalization factor.
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7.6.10 Single event sensitivity

Based on the factorization of the normalization factor k defined in Equation (7.15), we discussed

all the components in the previous sections. The single event sensitivity (SES) is defined as a BR

which gives 1 event observation. It is given by 1/k. It is calculated for each mX and τ. Figure 7.22

shows SES for τ= 20 ps (these measured values correspond to 1/k0).

The signal efficiency is estimated using MC generated with an interval of 5 MeV while the

signal search is performed with an interval of 1 MeV. Therefore, SES curve in Figure 7.22 is fitted

with exponential of quadratic function 7 to get SES with a interval of 1 MeV by interpolation.

Averaged uncertainties of edge points (5 MeV interval) are assigned to uncertainties of in-between

points. In addition, systematic uncertainties coming from the fitting are added to the systematic

uncertainties of interpolated points. Table 7.11 summarizes all the SESs after the interpolation.

Note that listed SES of 20, 25, 30, 35, 40, 45 MeV are estimated values while those for the other

masses in between are fitted values.

7 y= exp(ax2+bx+ c), where y is SES and x is mX. This function is used to interpolate points with a small number
of parameters.
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Table 7.11: Single event sensitivity. The uncertainty includes both statistical and systematic ones.
Interpolated points have larger uncertainties coming from the fitting.

MeV
5 ps 20 ps 40 ps

SES uncertainty (%) SES uncertainty (%) SES uncertainty (%)
20 3.3×10−12 9.4 2.9×10−12 9.7 3.0×10−12 9.5
21 3.6×10−12 12.3 3.2×10−12 12.2 3.3×10−12 12.0
22 3.7×10−12 11.8 3.3×10−12 11.5 3.4×10−12 11.3
23 4.0×10−12 11.5 3.6×10−12 11.1 3.7×10−12 11.0
24 4.3×10−12 11.4 3.9×10−12 11.1 3.9×10−12 10.9
25 5.4×10−12 10.2 4.7×10−12 9.1 4.8×10−12 9.0
26 5.2×10−12 11.8 4.7×10−12 11.3 4.8×10−12 11.2
27 5.8×10−12 12.0 5.3×10−12 11.6 5.3×10−12 11.4
28 6.6×10−12 12.2 6.1×10−12 11.8 6.1×10−12 11.7
29 7.7×10−12 12.4 7.0×10−12 12.0 7.0×10−12 11.8
30 8.6×10−12 9.8 7.9×10−12 9.8 7.9×10−12 9.8
31 1.1×10−11 13.2 9.9×10−12 12.8 9.8×10−12 12.4
32 1.3×10−11 13.2 1.2×10−11 12.8 1.2×10−11 12.4
33 1.6×10−11 13.2 1.5×10−11 12.7 1.4×10−11 12.3
34 2.0×10−11 13.1 1.8×10−11 12.5 1.8×10−11 12.2
35 2.6×10−11 11.7 2.4×10−11 10.6 2.3×10−11 10.0
36 3.2×10−11 13.0 2.9×10−11 12.6 2.8×10−11 11.9
37 4.1×10−11 12.9 3.8×10−11 12.5 3.7×10−11 11.8
38 5.4×10−11 12.8 5.0×10−11 12.4 4.8×10−11 11.7
39 7.2×10−11 12.8 6.6×10−11 12.5 6.4×10−11 11.8
40 9.0×10−11 10.3 8.2×10−11 10.6 7.9×10−11 9.8
41 1.3×10−10 14.0 1.2×10−10 16.2 1.2×10−10 15.3
42 1.9×10−10 14.3 1.7×10−10 16.6 1.6×10−10 15.7
43 2.7×10−10 14.6 2.4×10−10 17.2 2.3×10−10 16.2
44 3.8×10−10 15.0 3.4×10−10 17.8 3.2×10−10 16.7
45 6.3×10−10 14.1 6.3×10−10 17.9 5.6×10−10 17.1
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7.7 Statistical methods

Confidence interval The confidence interval of the number of signal is constructed based

on the Feldman-Cousins approach [108]. We use a profile-likelihood ratio ordering [53] when

building the interval. The test statistic λp is defined as

λp(s)= L (s, ˆ̂θ)
L (ŝ, θ̂)

,(7.19)

where the likelihood function is defined in Equation (7.9), s is the number of signal and θ is a

set of nuisance parameters (N1, N2, N3, r). ŝ and θ̂ are the values of s and θ which maximize the

likelihood and ˆ̂θ is the value of θ which maximizes the likelihood with a fixed s. The interval is

constructed using the distribution of the likelihood ratio of many pseudo experiments (toyMC)

simulated with PDFs defined in Equation (7.9). As we discussed in Section 7.3, the uncertainty

of the normalization factor estimated in Section 7.6.9 is incorporated as one of the nuisance

parameters, r.

Significance Hypothesis testing is performed on null hypothesis with the same test statistic

as Equation (7.19). After opening the blind box, we calculate null p-values and they are converted

into the values of significance.

7.7.1 Expected sensitivity

8 The sensitivity of the analysis is evaluated by a weighted average of the distribution of the

branching ratio limits at 90% C.L. under a null signal hypothesis. The expected number of

background events (Nexp,BG) is summarized in Table 7.3. Assuming a null signal hypothesis, the

expected number of observed events (Nexp,obs) is 0 or 1. Therefore, we show the expected upper

limit (= sensitivity) as weighted average of probabilities of these two cases; the sensitivity is

given by internal division points between expected branching ratio limits for Nexp,obs = 0 and

Nexp,obs = 1 with the following ratio:

Poi(λ= Nexp,BG,k = 0) : Poi(λ= Nexp,BG,k = 1)= 1 : Nexp,BG,

where Poi(λ,k)=λke−λ/k!. Figure 7.23 shows sensitivity (in red). Upper (lower) bound of the blue

band corresponds to 90% upper limit assuming the number of observed events to be 1 (0). In most

cases, the sensitivity is close to the lower bound of the blue band.

8Sensitivity is usually given by the median of the expected number of events under the background only hypothesis.
In our case, however, the expected number of events are 0 or 1 and the sensitivity is 0 for most of the masses. Thus,
we define sensitivity as the mean of the expected number of events, not the median.

124



7.7. STATISTICAL METHODS
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)

Figure 7.23: Expected branching ratio upper limit (90%C.L., red line). See text for the explanation
of the blue band.
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Table 7.12: The number of observed events in signal region (the most right column). The number
of sideband events in Table 7.3 and best fit value of NBG in the signal region are also listed
together.

mass (MeV)
sideband best fit NBG observed events

A(= A1 + A2) B(= B1 +B2) C(= C1 +C2 +C3 +C4) in signal region in signal region
20 0 0 1 0.048+0.228

−0.048 1
21 0 0 3 0.139+0.184

−0.084 0
22 1 0 5 0.278+0.275

−0.275 0
23 3 0 3 0.516+0.362

−0.362 0
24 2 0 1 0.415+0.321

−0.321 1
25 2 0 3 0.344+0.330

−0.330 0
26 0 0 3 0.143+0.186

−0.143 0
27 0 0 1 0.048+0.173

−0.048 0
28 0 0 1 0.046+0.171

−0.046 0
29 0 0 1 0.048+0.229

−0.048 1
30 0 0 0 0.000+0.167

−0.000 0
31 0 0 1 0.046+0.171

−0.046 0
32 0 0 0 0.000+0.167

−0.000 0
33 0 0 0 0.000+0.206

−0.000 0
34 0 0 0 0.000+0.286

−0.000 1
35 0 0 0 0.000+0.286

−0.000 2
36 0 0 0 0.000+0.286

−0.000 2
37 1 0 0 0.400+0.450

−0.400 1
38 0 0 2 0.156+0.230

−0.156 0
39 0 0 1 0.078+0.216

−0.078 0
40 0 0 0 0.000+0.206

−0.000 0
41 0 0 0 0.000+0.206

−0.000 0
42 0 0 0 0.000+0.206

−0.000 0
43 0 0 1 0.078+0.216

−0.078 0
44 0 0 0 0.000+0.206

−0.000 0
45 0 0 0 0.000+0.206

−0.000 0

7.8 Results

7.8.1 Observed events in the signal region

In previous sections, we discussed how to obtain the signal number and we determined event

selections using MC and sideband data. Thus, we open the blind box to count events after the

selection. The number of events in the signal region is summarized in the most right column of

Table 7.12. We observed non-zero events in some masses. Summing up observed events gives

9 events. 5 events of them are unique events. Its multiplicity is summarized in Table 7.13. For

instance, the event of (run number, event number) = (103742, 1386) is appeared in the four

adjacent mass bins. Reconstructed variables of observed events are summarized in Table C.1.

Figure 7.24 shows event displays of LXe for the five events. No strange event is observed.
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Table 7.13: Multiplicity of observed events

run number event number year multiplicity in which mass
103742 1386 2011 4 34, 35, 36, 37
109469 998 2011 1 29
156793 761 2012 1 24
161743 1102 2012 1 20
217733 683 2013 2 35, 36

Run: 103742 
Event: 1386

Run: 109469 
Event: 998

Run: 156793 
Event: 761

Run: 161743 
Event: 1102

Run: 217733 
Event: 683

Figure 7.24: Event displays of observed events
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Figure 7.25: p-value under null signal hypothesis as a function of assumed masses.

7.8.2 p-value and significance

Under null signal hypothesis p-values are calculated for all mass points and the results are

shown in Figure 7.25. Likelihood ratio is used as the test statistic (Equation (7.19)). We observed

the lowest p-value of 0.012 at 35 MeV, which corresponds to 2.2 σ significance.

Since we do not know the signal mass, we need to take the look elsewhere effect into account

to calculate the global significance. This effect is estimated according to Refs. [53, 109, 110].

For the local p-value of plocal = 0.012, its global one pglobal is obtained to be plocal = 0.10, which

corresponds to 1.3 σ.

7.8.3 Branching ratio limits

Figure 7.26 shows branching ratio limits (90%C.L.) obtained from this analysis (in blue) together

with the sensitivity (Section 7.7.1) and upper limits of the other experiment [57] and the previous

MEG study [62]. The upper bound of the blue region corresponds to the upper limits of the

branching ratio of µ+ → e+X, X → γγ . Since we observed small excess of events and uses the

Feldman-Cousins approach to calculate the confidence interval of the signal number, some masses

also have lower limits. The branching ratio upper limits of 10−11 (20 MeV) – 10−9 (45 MeV) are

set.
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Figure 7.26: Branching ratio limits (90% C.L.) for τ= 20 ps. The blue band are obtained from upper
and lower limits in this analysis. The red dashed line is sensitivity calculated in Section 7.7.1.
Yellow and green lines are results from the other experiment [57] and the previous MEG
study [62]. The MEG2012 result is recalculated based on the Feldman-Cousins approach for fair
comparison.
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7.9 Discussion

We observed excess events in some mass regions. The lowest p-value of 0.012 was observed at

mX = 35 MeV, which corresponds to 2.2 σ (local) and 1.3 σ (global) significance. Therefore, this

excess is not statistically significant. We assumed decay length of X to be less than 1 cm and three

lifetime settings (5, 20, and 40 ps) were used as an example. However, no significance difference

was observed among these settings. If the signal exist below 5 ps, it should be observed in these

settings because of the limitation of the vertex resolution (∼1 cm). Therefore, we conclude that

this null result holds for τ< 40 ps.

We set limits on the branching ratio of µ+ → e+X, X → γγ . As shown in Figure 7.26, the

branching ratio upper limits are improved by a factor of 4.4–13 depending on mX from the

previous analysis using the first two years of the MEG data [62]. Generally, the higher mX is, the

larger improvements become.

SES (Single event sensitivity) is improved by a factor of 5.6–13 depending on mX. Statistics

and positron analysis updates contribute at most ∼ 5 times smaller SES compared with the

previous analysis. This improvement mainly comes from the optimization of selection conditions

depending on mX. We set the criteria to optimize selection conditions and mX dependent thresh-

olds are determined in Section 7.4 while selection conditions were not optimized well in the

previous analysis. Selection efficiency is improved by a factor of at most ∼3 in 45 MeV.

Owing to the larger statistics and updates on analyses, the branching ratio upper limit has

been pushed down to the level of O (10−11). Our results set more stringent upper limits comparing

with not only the previous MEG studies [62], but also the upper limits converted from the Crystal

Box experiment’s results [57] in mX > 30MeV, which was not reached by the previous MEG

studies.

Prospects We use the full datasets of the MEG experiment in this analysis. The beam intensity

was forced to be reduced in order to suppress the accidental background and operate the detector

stably. The upgraded experiment, the MEG II experiment is currently being prepared [7]. We

plan to upgrade all the detectors to make the maximum use of the muon beam at the world’s

highest intensity (7×107µ/s) at Paul Scherrer Institut in Switzerland. Experimental sensitivity

of the MEx2G search is expected to be improved by one order of magnitude (O (10−12)) using the

MEG II datasets in all mass regions.

The higher mass has worse sensitivity in this analysis. This is mainly due to the 2γ acceptance

and the direction match efficiency. The 2γ acceptance is determined by the geometry of liquid

xenon gamma calorimeter and this part cannot be improved because the geometry is not changed

so much in the upgrade. The direction match efficiency can be worsened in the upgrade if we

consider only the µ+ → e+γ search in the data-taking. γ position resolution is expected to be

improved by a factor two, which enables us to tighten the direction match trigger condition. This

means that non back-to-back events are more unlikely to be triggered, resulting in a worse trigger
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efficiency for µ+ → e+X, X → γγ . However, the MEG II trigger development is underway and

trigger efficiencies for higher mass can be improved by at most factor ∼2 if a dedicated trigger for

µ+ → e+X, X→ γγ is prepared. This will be a matter of discussion in the MEG II collaboration.

All the resolutions will be improved by a factor of two, which will also improve the signal

selection efficiency to some extent. There is no dedicated time calibration source for 2γ events in

this analysis. Developments of dedicated analysis tools for 2γ from annihilation-in-flight positrons

provide us with the new time calibration source. We may set tighter selection conditions for

timing distributions, resulting in better selection efficiency.

A further update on the MEx2G search can be possible in the future CLFV experiments.

The MEG II experiment and the Mu3e experiment are being prepared and these experiments

will be CLFV experiments in the 2020s. There are several considerations of the next generation

CLFV experiments [68, 111, 112]. Proposed detectors have full acceptance around the beam axis,

unlike the MEG detector. In addition, the muon beam intensity at PSI will also be upgraded

around 109 [113]. The expected sensitivity will be further pushed down by one order of magnitude,

O (10−13).
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CONCLUSION

We have searched for a lepton flavor violating muon decay mediated by a new light

particle. The charged lepton flavor violation is one of the powerful tools to search for

new physics beyond the standard model. On the other hand, light new physics has

attracted a great deal of attention. In the analysis performed in this thesis, we combined these

two different directions and have searched for the µ+ → e+X, X→ γγdecay using the full datasets

(2009–2013) of the MEG experiment.

No significant excess was found in the mass region of 20–45 MeV and lifetime below 40 ps

for a new light particle. Thus, we set the most stringent upper limits of the branching ratio in

the mass region of 20–40 MeV. In particular, the upper limits are pushed down to the level of

O (10−11) for 20–30 MeV.

It is at most 60 times more stringent result than the bound converted from the previous

experiment, the Crystal Box experiment [57]. Together with the previous analysis [62] using

the first-two-year physics data of the MEG experiment, this is the first direct search of the

µ+ → e+X, X→ γγdecay in the world.

The upgrade of the MEG experiment, the MEG II experiment, is planned and the sensitivity

is expected to be improved by one order of magnitude, resulting in O (10−12) in mass region of

20–30 MeV.
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LINEAR ASSUMPTION

In this appendix, we discuss the linearity assumption on the background distribution.

We use the following relations in the background and signal estimation (Section 7.2 and

Section 7.3).

Nexp
A = N2 × yC1 + yC2

yB
+N3 × yC1 + yC2

yB
(A.1)

Nexp
B = N1 × xC1 + xC2

xA
+N3 × xC1 + xC2

xA
+N2 × fescape(A.2)

Nexp
C = N3 × yC1 + yC2

yB
× xC1 + xC2

xA
+N2 × fescape × yC1 + yC2

yB
(A.3)

The same equations as Equation (7.2), (7.3), and (7.4) are listed again. The number of events in

the sidebands can be calculated from N1, N2, N3 assuming their linear distribution over time.

Hereafter, we check this assumption.

We need to check the following three factors:

xC1 + xC2

xA
,

yC1 + yC2

yB
, fescape(A.4)

Equation (A.1) means that the expected number of background events in the region A has type2

(N2) and type3 (N3) contributions. If we assume the background distribution is linear, we can

scale the number of events with a factor of ratio between the box sizes. The scaling factors of

tγγ and tγ1e are xC1+xC2
xA

and yC1+yC2
yB

, respectively.

On the other hand, the first two terms in Equation (A.2) means that the region B has type1

(N1) and type3 (N3) contributions. In addition, we need to consider escape events from the

tγγ peak. fescape is defined as a fraction of events in |tγγ| > 1ns escaped from |tγγ| ≤ 1ns whose

origin is tγγ peak.
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Figure A.1: Sideband distributions. The small figure with red box above the each plot shows which
part of sideband data is used to make the corresponding distribution. Top left: teγ distribution
(tγγ ≤ −1ns), top center: teγ distribution (|tγγ| < 1ns), top right: teγ distribution (tγγ ≥ 1ns), bottom
left: tγγ distribution (teγ ≤ −1ns), bottom center: tγγ distribution (|teγ| < 1ns), bottom right: tγγ
distribution (teγ ≥ 1ns)

Sideband distributions Figure A.1 shows sideband distributions of BG events (data). Top

three plots show that tγ1e distribution seems to be linear. Bottom three plots show that tγγ floor

distribution seems to be linear but escaped events from the tγγ peak exist in tγγ > 1ns. Then, we

discuss factors listed in Equation (A.4) using these distributions quantitatively.

Scaling factor: yC1+yC2
yB

First, we discuss yC1+yC2
yB

. Figure A.2 is teγ distribution (tγγ ≥ 1ns). The

left plot is |teγ| ≥ 1ns and the right plot is |teγ| < 1ns. To check linearity of the distribution, a

linear function (in red in the left plot of Figure A.2) is fitted to the left distribution and take

difference between the fitted function and teγ distribution in |teγ| < 1ns. The blue line in the right

plot is the same one as the red line in the left one. Reduced χ2 of the fitting is 1.25 (in the left
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Figure A.3: teγ distribution (tγγ ≥ 1ns)

plot). The difference between number of events from the right distribution and integral of the

fitted function (in the right plot) is 4.0%.

The same fitting is applied on teγ distribution (tγγ ≥ 1ns) as shown in Figure A.3. The reduced

χ2 of the fitting is 0.98 (in the left plot). The difference between number of events from the right

distribution and integral of the fitted function (in the right plot) is 3.9%.

First, the reduced χ2s are close to 1 and the background distribution is linear over time.

Second, the difference between fitting function and the distribution is ∼4% and it is statistical

uncertainty is dominant. Therefore, systematic uncertainty of the scaling factor is negligible

compared with statistical uncertainty when estimating signal number (∼O (10)%) due to the fact

that low statistics is expected after event selections. In conclusion, we can assume the background

distribution is linear and the scaling factor yC1+yC2
yB

can be used with no other corrections.

137
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Figure A.4: Left: tγγ distribution (|teγ| ≥ 1ns), right: tγγ distribution (|teγ| < 1ns). See texts in
detail. Note that the blue curve in the right figure is not a fitted curve of this histogram, it is
estimated from the other region (in the left figure).

Scaling factor: xC1+xC2
xA

Next we check if the tγγ distribution (bottom plots in Figure A.1) is

linear. However, it is difficult to pick up linear components solely and check the assumption

because tail component from the tγγ peak is also included in tγ > 1ns as shown in the plots.

Therefore we assume that the background (type 1) is linear and deviation from the linear function

is included in the estimation of escape factor fescape.

Escape factor: fescape To check the linearity of the background distribution and estimate the

escape factor, first, a double Gaussian is fitted to tγγ distribution in |teγ| ≥ 1ns as shown in the red

curve in the left figure of Figure A.4. Then, it is scaled with the box size to the region of |teγ| < 1ns

as shown in the blue curve in the right figure. A difference between the blue curve and the event

distribution in the right figure include deviation from the assumption that tγγ background is

linear ( xC1+xC2
xA

) and uncertainty of fescape.

The difference is estimated to be 2.8%, which is statistical component is dominant. Therefore,

systematic uncertainty coming from the two components listed above is less than 2.8%.

fescape is estimated from the fitted double Gaussian function to be 17.1%. This is added

to Equation (A.2) and (A.3) as a correction term. Its uncertainty is negligible compared with

statistical uncertainty when estimating signal number (∼ O (10)%) due to the fact that low
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statistics is expected after event selections.

Finally, concerning the scaling factor xC1+xC2
xA

, its systematic uncertainty is negligible because

its effect is included in fescape and is smaller than 17.1%×2.8%.

Summary In conclusion, we can assume the background distributions are linear and we use

the factors ( xC1+xC2
xA

, yC1+yC2
yB

, fescape) as constant values in the background and signal estimation.

139





A
P

P
E

N
D

I
X

B
RESULTS OF OTHER LIFETIMES

In this section, efficiency and S.E.S. plots of 5 ps and 40 ps are shown. Only 20 ps case is

shown in the main section.

B.1 Gamma acceptance
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Figure B.1: Gamma acceptance of (a) 5 ps and (b) 40 ps.
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B.2 Gamma efficiency
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B.3 Direction match efficiency
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B.4. SELECTION EFFICIENCY

B.4 Selection efficiency
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Figure B.4: Selection efficiency of (a) 5 ps and (b) 40 ps.

B.5 Signal efficiency
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Figure B.5: Overall signal efficiency of (a) 5 ps and (b) 40 ps.
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B.6 Single event sensitivity
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Figure B.6: Single event sensitivity of (a) 5 ps and (b) 40 ps.

B.7 Branching ratio limits
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Figure B.7: Branching ratio limits of (a) 5 ps and (b) 40 ps. The blue band are obtained upper and
lower limits in this analysis.
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FURTHER INFORMATION OF THE EXCESS

C.1 Reconstructed variables of excess events

Table C.1 shows reconstructed variables of the observed 5 events.
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