
Quantum dark optics of axions: 
how can dark matter axion

generate quantized photons?
Akira Miyazaki
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Clear need for new physics: e.g. Dark Matter (DM)

NASA/CXC/M. Weiss - Chandra X-Ray 
Observatory: 1E 0657-56

X-ray 
image

gravity 
image

By Mario De Leo - Own work, 
CC BY-SA 4.0, 
https://commons.wikimedia.o
rg/w/index.php?curid=743985
25

✓ Hypothetical new particles 
linked to intrinsic issues in 
the Standard Model?

Neutrino?
Dark astrophysical objects?
Modified gravity?
Primordial black holes?

van Dokkum, et 
al. Nature 555, 629–632 
(2018)
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My main business: Radio Frequency cavities for accelerators

HIE-ISOLDE@CERN
Heavy ion

ESS@Lund
Proton Linac for neutrons

LHC@CERN
proton collider 
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PIPII@FNL
proton driver for neutrino

FCC Higgs 
Factory

ILC Higgs 
Factory

Pros: any present and future accelerators would include superconducting RF cavities
Cons: Timeline (decades?) costs (>>BEUR?) still no promise for new physics



Road map for the NEXT colliders

𝑀
𝜕2𝒖

𝜕𝑡2
+ 𝜂

𝜕𝒖

𝜕𝑡
− 𝜖

𝜕2𝒖

𝜕𝑧2
+ 𝛻𝑈 𝑧, 𝑢 = 𝑱𝑅𝐹(𝑧, 𝑢) × 𝑩ext

𝜎𝑁 𝜎𝑠

Highly performing 
superconducting RF 
cavities for the precision 
measurement of Higgs 
boson 5



non-relativistic Higgs mechanism

Nonequilibrium superconductivity

Superconducting cavities

New physics

Relativistic Higgs mechanism

Gravitational wave

FCCee/eh/hh/CEPC EIC

QCD

Testing gauge theory

Cosmology

Accelerator 
projects

ILC

MuCol
CLIC/C3

Plasma

3 TeV Supersymmetry
axions

 Dirac CP

S-KEKB PIPII

Microwave
R&D

leptoquark

LHeC

Flavor anomaly

SRF accelerators

expensive and taking long time, political 

Today’s talk: Short cut

Interest of most 
of the people 
related to CERN

Very Important but how may people are interested?

Precision measurement and deviation from SM
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Outline

• Background: classical to quantum detection of axions
• Motivation of this talk: classical to quantum??
• Rigorous proof of classical to quantum
• Applications: coherence & homodyne with polarization
• Conclusion
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Axions: a byproduct to cancel the strong CP

𝐿𝑄𝐶𝐷 ⊃ −
1

4
𝐺𝜇𝜈
𝑎 𝐺

𝜇𝜈𝑎
+

𝑔𝑠
2

32𝜋2
𝜽𝐺𝜇𝜈

𝑎 ෨𝐺𝜇𝜈𝑎

This term generates electric dipole moment in neutron
• Theory: 𝑑𝑛~4.5 × 10−15𝜽 ecm
• Experiment: 𝑑𝑛 < 2.9 × 10−29 ecm

→ 𝜃 < 0.7 × 10−11 ≪ 1

𝑔𝑠
2

32𝜋2
𝜃 +

𝒂

𝐹𝑎
𝐺𝜇𝜈
𝑎 ෨𝐺𝜇𝜈𝑎 → 0 (after SSB)

Introduce a new global chiral U(1) field 𝑎

Quantum Chromodynamics (theory of strong force)

SSB→ A pNG boson appears as a byproduct = axion

gluons

Naturalness without anthropic solution
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Axion gains mass from QCD

F. Chadha-Day, J. Ellis, D. J. E. Marsh, ”Axion Dark Matter: What is it and Why Now?” arXiv:2105.01406 

𝑚𝑎𝑓𝑎~𝑚𝜋𝑓𝜋
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Axion as dark matter (PQ scale > inflation)

Co & 
Harigaya

Axion loses kinetic energy non-thermally by coherent oscillation in the PQ potential

Misalignment 
mechanism

11

𝑑2𝑎

𝑑𝑡2
+ 3𝐻 𝑡

𝑑𝑎

𝑑𝑡
+𝑚𝑎 𝑇 2𝑎 = 0

Hubble constant: friction → cooling down



De Broglie wavelength 𝜆𝐵 vs density of DM ത𝑛

https://www.symmetrymagazine.org/article/wimps-in-the-dark-matter
-wind Artwork by Sandbox Studio, Chicago with Corinne Mucha

• We are moving in the galaxy halo of dark 
matter with speed of 220 km/s → 𝛽~0.07%

WIMP: 𝑚~1 TeV (?)

𝜆𝐵~
196 MeVfm

0.7 GeV
= 0.3 fm

Axions: 𝑚~10 𝜇eV

𝜆𝐵~
2 × 10−7 eVm

7 neV
= 28 cm

• Galaxy halo of dark matter density 𝜌 ~0.4 ΤGeV cm3

ത𝑛~
0.4 ΤGeV cm3

10 𝜇eV
~1013 cm−3ത𝑛~

0.4 ΤGeV cm3

1 TeV
~10−3 cm−3

𝐸𝑐𝑙
2 =

ത𝑛

𝜆
≫

1

𝜆4
~ 0 ෠𝐸 ⋅ ෠𝐸 0

→ ത𝑛 ≫
1

𝜆3
→ ത𝑛 ≪

1

𝜆3

WIMP behaves 
as a particle

DM Axions 
behave as a wave 12

• De Broglie wavelength 𝜆𝐵 = Τ196 MeVfm 𝑚𝑣



Standard model of dark matter axion distribution function
𝑓 𝜔 = 𝑃0𝜃 𝜔 −𝑚𝑎 2𝜔0

−
3
2

𝜔 −𝑚𝑎

𝜋
exp −

𝜔 −𝑚𝑎

𝜔0

DM 𝛾

𝐵

Δ𝑓~10−6 ×𝑚𝑎

Maxwell-
Boltzmann 
distribution

𝑣𝑐 = 220 km/s

Mon Not R Astron Soc, Volume 369, Issue 4, July 2006, Pages 1688–1692, 
NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

If 𝑚𝑎 = 10GHz

Microwaves converted from DM axion 
is very narrow band classical waves

Velocity 
dispersion of 
Milky way 
Galaxy around

13



Classical electrodynamics is the mean to hunt axions

Courtesy: Gray Rybka, PATRAS2022

Skivie haloscope

Axions modify 
Maxwell equation

A microwave is 
generated and resonated 
inside a cavity 14



Wave detection vs photon (energy) detection

cavity

RF amp

LO mixer

Electromagnetic 
waves

I/Q ADC

FFT

𝑅𝐹 𝑡 = 𝐼 𝑡 cos 𝜔𝑡 + 𝑄 𝑡 sin 𝜔𝑡

→ 𝑃 𝜔 = ሚ𝐼2 𝜔 + ෨𝑄2 𝜔

From 
wikipedia

AM et al, ANNALEN DER 
PHYSIK 2023, 536, 2200619

Digital processing

15

cavity

sensor

DC 
amp

photons

broadband

(Flash) ADC

Δ𝜙Δ𝑛 > 1

𝑃 𝑡 = 𝑛 × ℏ𝜔 ∝ 𝑉𝐴𝐷𝐶 (𝑡)

Poissonian



Jonsson Nyquist Noise

𝑇

Any conductor at temperature 𝑇

V

𝑃𝑁 =
𝑉2

4R

𝑉

𝑡

Voltage fluctuates

𝑉2 Δ𝜈~4𝑅Δ𝜈
ℎ𝜈

𝑒 Τℎ𝑣 𝑘𝐵𝑇 − 1

h𝜈≪𝑘𝐵𝑇
4𝑅𝑘𝐵𝑇Δ𝜈

J. B. Johnson Phys Rev 32 97 (1928): Experimental discovery of the relation
H. Nyquist Phys Rev 32 110 (1928): Thermodynamics + statistical mechanics of bosonic modes

Rayleigh Jeans

Noise power spectral density 𝑃𝑁 =
𝑉2

4RΔ𝜈
~𝑘𝐵𝑇

H. B. Callen and T. A. Welton Phys Rev 1 34 (1951)

𝑃𝑁 =
ℎ𝜈

2
+

ℎ𝜈

𝑒 Τℎ𝑣 𝑘𝐵𝑇 − 1
[W/Hz]

Quantum mechanical derivation

→ “Blackbody radiation” of electromagnetic waves inside a 1D conductor

Zero-point energy 16



Standard Quantum Limit from the Kennard inequality

S.K. Lamoreaux et al Phys Rev D 98 035020 (2013)
C. M. Caves PRD 26 8 1817 1982

cavity

RF amp

LO mixer

I/Q ADC

FFT

Digital processing

Gain 𝐺

𝑝𝑖 , 𝑞𝑖 =
𝑖ℏ

2
= 𝑝𝑓 , 𝑞𝑓

𝑞𝑖 𝑝𝑖

𝑞

𝑝

𝑞𝑓 𝑝𝑓

𝑝𝑓 , 𝑞𝑓 = 𝐺𝑝0, 𝐺𝑞0 + 𝑝𝑔 , 𝑞𝑔 =
𝑖𝐺2ℏ

2
+ 𝑝𝑔 , 𝑞𝑔 =

𝑖ℏ

2

→ 𝑝𝑔 , 𝑞𝑔 =
𝑖 1 − 𝐺2 ℏ

2
→ Δ𝑝𝑔

2 Δ𝑞𝑔
2 ≥

𝐺2 − 1 ℏ2

4

𝑝, 𝑞 =
𝑖ℏ

2
→ Δ𝑝2 Δ𝑞2 ≥ 𝑝, 𝑞 2 =

ℏ

4
(Kennard)

: before and after the amplifier chain

𝑃𝑆𝑄𝐿 = ℎ𝜈 : standard quantum limit
Ex) ℎ × 1 GHz = 6.6 × 10−25 W/Hz

𝑞𝑓 = 𝐺𝑞𝑖 + 𝑞𝑔

Amplifier uncertainty principle

𝑝𝑓 = 𝐺𝑝𝑖 + 𝑝𝑔

𝑃 ≥
1

𝐺2

𝐺2ℎ𝜈

2
+

𝐺2 − 1 ℎ𝜈

2

𝐺≫1
2 ×

ℎ𝜈

2
= ℎ𝜈

17



Photon detectors to overcome SQL

S.K. Lamoreaux et al Phys Rev D 98 035020 (2013)

Single photon sensors may be a solution in the future
→Although one loses phase information, zero background at cold may be better
→Lower noise in higher frequency →where is the cross-over? 10 GHz? 100 GHz??18

Noise power of wave detection

ത𝑛 =
1

𝑒 Τℎ𝜈 𝑘𝐵𝑇 − 1

𝑄𝑐: cavity quality factor
𝜂: quantum efficiency of the sensor

𝑃𝑙 = ℎ𝜈 ത𝑛 + 𝟏
Δ𝜈

𝑡
∝ 𝜈

Noise power of photon detection

𝑃𝑠𝑝 = ℎ𝜈
𝜂ത𝑛𝑄𝑐
2𝜋𝜈𝑡

∝ 𝜈

Τ
𝑃
𝑙
𝑃 𝑠
𝑝

30 GHz X. Fan et al, PRL129, 
261801, 2022

F. Paolucci et al Phys Rev Appl. 14 034055 (2020)
≠1/2



Summary: pros and cons in wave vs particle
• Wave detection

• Pros
• Enormous enhancement of S/N by using narrow band nature of axion signal

• Signal: narrow band of 20 kHz out of 20 GHz center frequency
• Noise: broad band

• Simple and established through commercial devices
• OK at warm or 4 K level (in other words no use to be at mK)

• Cons
• Standard Quantum Limit (→ Vacuum squeezing to mitigate it…)

• Quantum / particle / energy detection
• Pros

• Free from SQL
• Cons

• No phase information → FFT not possible for narrow-band / broad band signal selection
• Narrow band-pass filter  / antenna is limited (resonator Q is the best)
• Need cooling down way lower than wave detection (< 100 mK)

19



Outline

• Background: classical to quantum detection
• Motivation of this talk: classical to quantum??
• Rigorous proof of classical to quantum
• Applications: coherence & homodyne with polarization
• Conclusion
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Question: classical → quantum 

Classical
axion

Classical
microwaves

Quantum
detection

What is the quantum statistical 
distribution of detected photons?
→ Goal: Monte Carlo

• Can we obtain quantum statistical distribution without 
assuming quantum nature in the source?

• Can we assume a Poisson distribution?
• What kind of quantum state gives Poisson distribution? 21



Schrödinger, E. (1926). "Der stetige Übergang von 
der Mikro- zur Makromechanik". Die
Naturwissenschaften 14 (28)

22



Very classical quantum state: Schrödinger’s wave packet

𝛹 𝑥1 =
1

2𝜋
𝑒− 𝑥1−𝛼 cos 𝜔𝑡 2

𝛼𝛹 𝑥1 = 𝑥1 +
1

2

𝑑

𝑑𝑥1
𝛹 𝑥1

By Ashton Bradley Aspir8 (talk) - 
Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/
w/index.php?curid=149671045

𝑥 = 𝑥1 𝑝 =
𝜕𝐻

𝜕𝑥
= 𝑥2

𝛹(𝑥1) ≡ 𝑥1 𝛼

ො𝑥1, ො𝑥2 =
𝑖

2
→ 𝑥1 ො𝑥2 𝑥1 ≡

1

2𝑖

𝑑

𝑑𝑥1

𝑥1 ො𝑥1 𝑥1 = 𝑥1

𝑎| ۧ𝛼 = 𝛼| ۧ𝛼

ො𝑎 ≡ ො𝑥1 + 𝑖 ො𝑥2

𝛼: eigenvalue of 
annihilation operator

Hints for derivation

23



Modern representation of wave packet: coherent state

| ۧ𝛼 = 𝐷(𝛼)| ۧ0

𝑥1

𝑥2

Quantum 
fluctuation

ො𝑥1 =
1

2
ො𝑎 + ො𝑎†

ො𝑥2 =
1

2𝑖
ො𝑎 − ො𝑎†

1/2

1/2

| ۧ0
𝐷(𝛼)

𝐷 𝛼 ≡ exp(𝛼 ො𝑎† − 𝛼∗ ො𝑎) 

Displacement operator

𝐸 ≡ 𝛼 መℰ 𝒓, 𝑡 𝛼 = 𝑖
ℏ𝜔

2𝜖0𝑉
𝛼𝑒−𝑖 𝜔𝑡−𝒌⋅𝒓 − 𝛼∗𝑒+𝑖 𝜔𝑡−𝒌⋅𝒓

𝑃 𝑛 = 𝑛 𝛼 2 =
𝛼 2 𝑛

𝑛!
𝑒− 𝛼 2

| ۧ𝜓 𝑡 = | ൿ𝛼𝑒−𝑖𝜔𝑡

| ۧ𝛼 = 𝑒− Τ𝛼 2 2 ෍

𝑛=0

∞
𝛼𝑛

𝑛!
| ۧ𝑛

መℰ 𝒓, 𝑡 = 𝑖
ℏ𝜔

2𝜖0𝑉
ො𝑎𝑒−𝑖 𝜔𝑡−𝒌⋅𝒓 − ො𝑎†𝑒𝑖 𝜔𝑡−𝒌⋅𝒓

: Plane wave solution of Maxwell equation

: Poisson distribution

Electric field operator

24



Don’t we need a quantum state of axion?

Quantum
axion

Quantum
microwaves

Quantum
detection

෡𝐻 = 𝜔𝑎 ො𝑎𝑎
† ො𝑎𝑎 +𝜔𝛾 ො𝑎𝛾

† ො𝑎𝛾 +𝜔𝑚 ො𝑎𝑎
† ො𝑎𝛾 +𝜔𝑚

∗ ො𝑎𝛾
† ො𝑎𝑎

𝛾

𝐵

𝑎

• Mean is OK but standard deviation depends on the assumptions on the source
• Simplest example: coherent state → coherent state: | ൿ𝛼𝑎, 𝛼𝛾 = (1 + 𝑈𝑎𝛾𝛼𝑎𝛼𝛾

†)| ۧ𝛼𝑎, 025



Example of quantum nature of axions 1: squeezing

Phys. Rev. D 106, 043517, 2022

Gravitational potential

Kerr-type nonlinearity

• Gravitational self-interaction of dark matter 
axions causes quantum squeezing within a 
surprisingly short period

• Experimental detection seems non-feasible 

Initial 
condition: 
coherent state

26



Example quantum nature of axions 2 : thermalization

Phys. Rev. D 107, 063518 (2023)

Interaction to 
environment (SM)

Time evolution of 
density matrix

Initial condition: 
axion x environment

Environment: thermal 
bath (CMB)

Initial axion: coherent state 
from misalignment mechanism

Coherent 
term decays

Thermal 
term grows

Decay rate: 

Quantum master equation
→ Initial coherent axions become 

decoherent due to thermalization

27



Buschmann, et al. Nat 
Commun 13, 1049 (2022)

Example quantum nature of axions 3: decay products

28

Axion DM is made of decay 
products of axion strings

PQ scale < inflation

S. Knirck PhD thesis



杞憂っぽい
𝐸𝑐𝑙
2 =

ത𝑛

𝜆
≫

1

𝜆4
~ 0 ෠𝐸 ⋅ ෠𝐸 0

任意の古典的アクシオンから光子の量子状態を予言できる
29



Outline

• Background: classical to quantum detection
• Motivation of this talk: classical to quantum??
• Rigorous proof of classical to quantum
• Applications: coherence & homodyne with polarization
• Conclusion
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Glauber’s theorem: classical → quantum

Classical current generates quantized 
photons in a quantum coherent state
→ Let’s apply this to classical axions 31



Exact solution 
without 
perturbation 

| ۧ0

| ۧ𝛽
axion

Any classical axion generates photons in a quantum coherent state

෡𝐻 = ℏ𝜔 ෠𝑏† ෠𝑏 +
1

2
+ ℏ 𝑓 𝑡 ෠𝑏† + 𝑓∗(𝑡)෠𝑏

Quantum state of photons from axions
Quantized photon states of 
a single mode inside a 
resonant cavity

෠𝑏†| ۧ𝑛 = 𝑛 + 1| ۧ𝑛 + 1

෠𝑏| ۧ𝑛 = 𝑛| ۧ𝑛 − 1

෠𝑏, ෠𝑏† = 𝑖ℏ

෠𝑏, ෠𝑏 = ෠𝑏†, ෠𝑏† = 0

𝑓 𝑡 = 𝑔𝑎𝛾𝛾𝑎(𝑡)න(𝑬(𝑥) ⋅ 𝑩0)𝑑
3𝑥

𝑬(𝒙)

ො𝑛| ۧ𝑛 ≡ ෠𝑏† ෠𝑏| ۧ𝑛 = 𝑛| ۧ𝑛

෡𝐻0 ෠𝑉𝐼 | ۧ𝜓 𝑡 = exp −𝑖𝐶1 𝑡 ෡𝐷 𝛽 𝑡 exp( Τ−𝑖𝐻0𝑡 ℏ) | ۧ𝜓 0

𝛽 𝑡 = 𝐶2 𝑡 exp(−𝑖𝜔𝑡)

| ۧ𝛽 = ෡𝐷 𝛽 | ۧ0

෡𝐷 𝛽 = exp(𝛽෠𝑏† − 𝛽∗ ෠𝑏)

Classical axion 
~ displacement 
operator (x phase)

𝑩𝟎

𝐶2 𝑡 = න
0

𝑡

𝑑𝑡′𝑓 𝑡′ exp(𝑖𝜔𝑡′)

𝐶1 𝑡 = −
𝑖

2
න
0

𝑡

𝑑𝑡′𝑓∗ 𝑡′ exp(𝑖𝜔𝑡′)න
0

𝑡′

𝑑𝑡′′𝑓 𝑡′′ exp(𝑖𝜔𝑡′′)

Only linear 
operators

Derived by Ayuki Kamada U Warsaw
Any classical 
axion field

32



Key takeaways

• Interaction term is linear in ෠𝑏† and ෠𝑏
• Rigorous solution is given by a displacement operator and a phase shift

• The displacement operator generates a coherent state from vacuum
• With complex amplitude 𝛽(𝑡) given by time integral of the 

classical axion field 𝑓(𝑡)
• Photon statistic in a coherent state is given by a Poisson distribution

• With mean number of photons ത𝑛 = 𝛽 𝑡 2

• Valid for any classical axions and any initial state of photons not only 
the vacuum state

33



Initially in the vacuum state → coherent state

| ۧ𝜓 𝑡 = exp −𝑖𝐶1 𝑡 ෡𝐷 𝛽 𝑡 | ۧ0 = exp −𝑖𝐶1 𝑡 | ۧ𝛽(𝑡)

Photon counting (Projective measurement of photon numbers)

𝑃𝑛 = |𝑛ۦ ۧ𝜓(𝑡) 2 = 𝜓 𝑡 ො𝑛 𝜓 𝑡 2 = 𝛽(𝑡) ො𝑛 𝛽(𝑡) =
𝑒− 𝛽 𝑡 2

𝛽(𝑡) 2𝑛

𝑛!
| ۧ𝛽 = exp −

𝛽 2

2
෍

𝑛=0

∞
𝛽𝑛

𝑛!
| ۧ𝑛

𝛽 𝑡 = exp(−𝑖𝜔𝑡)න
0

𝑡

𝑑𝑡′𝑓 𝑡′ exp(𝑖𝜔𝑡′)

Property of a coherent state

• The number of photons from classical axion conversion obeys Poisson distribution of time varying mean 
• The time variation is purely from the time integral of classical axion field

Field measurement (Projective measurement of field operator)
መℰ 𝒓, 𝑡 = 𝑖

ℏ𝜔

2𝜖0𝑉
෠𝑏𝑒−𝑖 𝜔𝑡−𝒌⋅𝒓 − ෠𝑏†𝑒𝑖 𝜔𝑡−𝒌⋅𝒓

𝐸(𝑡) ≡ 𝜓(𝑡) መℰ 𝒓, 𝑡 𝜓(𝑡) = 𝑖
ℏ𝜔

2𝜖0𝑉
𝛽(𝑡)𝑒−𝑖 𝜔𝑡−𝒌⋅𝒓 − 𝛽∗(𝑡)𝑒+𝑖 𝜔𝑡−𝒌⋅𝒓

Electric field operator

Definition of the label of the coherent state

• This is the classical electric field (solution of Maxwell equation) →Classical Primakoff effect is reproduced
• The line-width information is implemented inside 𝛽(𝑡)→ time varying amplitude in time domain
• Integration time 𝑡 (FFT time) needs to be selected depending on the coherent time of the classical axion field 𝑎(𝑡)
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Noise source: | ۧ0

Kelly Marie Backes PhD thesis
Nature, 590(7845):238–242 

Squeezed vacuum: መ𝑆| ۧ0

Coherent displacement 
by a classical axion signal

Phase-sensitive 
amplification

Initially in the squeezed vacuum state
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Initially in a thermal state → coherent thermal state

axion

𝑬(𝒙)

𝑩𝟎

𝑇

Thermal 
reservoir

ത𝑛𝑡ℎ =
1

exp Τℏ𝜔 𝑘𝐵𝑇 − 1

ො𝜌0 ≡
exp Τ−෡𝐻0 𝑘𝐵𝑇

𝑍
=

1

1 + ത𝑛𝑡ℎ
෍

𝑛=0

∞
ത𝑛𝑡ℎ

1 + 𝑛𝑡ℎ

𝑛

| ۧ𝑛 |𝑛ۦ = න𝑑2𝛼
exp Τ− 𝛼 2 ത𝑛

𝜋ത𝑛
| ۧ𝛼 |𝛼ۦ

ො𝜌 𝑡 = 𝑈 𝑡 ො𝜌0𝑈
† 𝑡 =

1

𝑍
෡𝐷 𝛽 𝑡 exp Τ−෡𝐻0 𝑘𝐵𝑇 ෡𝐷† 𝛽 𝑡

𝑈 𝑡 = exp −𝑖𝐶1 𝑡 ෡𝐷 𝛽 𝑡

Unitary operator of time evolution

Coherent thermal state
Realistic quantum model of axion + noise

ത𝑛 = 𝛽 𝑡 2 + ത𝑛𝑡ℎ

𝜎2 = 𝜎𝑡ℎ
2 + 𝛽 2 1 + 2 𝑏†𝑏

𝑡ℎ

𝐴 𝑡ℎ =
1

𝑍
𝑇𝑟{𝑒 ൗ−ℏ𝜔𝑏†𝑏 𝑘𝐵𝑇𝐴}Statistics of photons

= Poisson + Planck

≠ Poisson + Planck

Z = Tr exp Τ−෡𝐻0 𝑘𝐵𝑇

→Naïve additive Monte Carlo (Poissonian signal + thermal noise) is wrong! 36



Cf) Multi-mode Planck → reduction to Poissonian
M. Fox “Quantum Optics” p.85

𝜎2 = ത𝑛 +
ത𝑛2

𝑁𝑚

STD of thermal noise

Poisson Deviation from
Poisson

𝑁𝑚: number of modes
→𝑁𝑚 ≫ 1 with bandwidth

𝜎2 → ത𝑛

Open question: what is the standard deviation of thermal coherent state 
under realistic bandwidth of our quantum detector?
→ This could be Poisson in the end… 37



Outline

• Background: classical to quantum detection
• Motivation of this talk: classical to quantum??
• Rigorous proof of classical to quantum
• Applications: coherence & homodyne with polarization
• Conclusion
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Temporal coherence of axion DM

D. Marsh arXiv:2211.13602

Coherent stochastic model Quantum incoherent model

DM axion is in quantum coherent state ~ truly classical wave
39



Coherent stochastic: Rayleigh fading
Random phase in classical microwaves → temporal coherency

https://www.sharetechnote.com/html/Handbook_LTE_ChannelModel_Rayleigh.html

Rayleigh distribution

Source signal
𝑣𝑠 𝑡 = cos(𝜔𝑡 + 𝜙)

Received signal

𝑣𝑟 𝑡 = ෍

𝑛=1

𝑁

𝑐𝑛 cos(𝜔𝑡 + 𝜙 + 𝜙𝑛)

Tele-
communication
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What happens to the quantum detector response

𝑃𝑛 = |𝑛ۦ ۧ𝜓(𝑡) 2 =
𝑒− 𝛽 𝑡 2

𝛽(𝑡) 2𝑛

𝑛!

𝛽 𝑡 = exp(−𝑖𝜔𝑡)න
0

𝑡

𝑑𝑡′𝜙 𝑡′ exp(𝑖𝜔𝑡′)

Δ𝑡 Δ𝑡 Δ𝑡

Δ𝑡

• The photon number obeys Poisson distribution of 
varying mean

• Depends on integral of classical axion amplitude 
over temporal coherency

• Δ𝑡→ response time of quantum sensor? Or DAQ?

Randomly varying 
Poissonian over time!
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Modulation in classical axion amplitude

→ Basic theory for homodyne detection (Lock-in method)
→ Enhance S/N even though losing bandwidth in quantum detection

෡𝐻 = ℏ𝜔 ෠𝑏† ෠𝑏 +
1

2
+ ℏ 𝑓 𝑡 ෠𝑏† + 𝑓∗(𝑡)෠𝑏 𝑓 𝑡 = 𝑔𝑎𝛾𝛾𝑎(𝑡)න(𝑬(𝑥) ⋅ 𝑩0)𝑑

3𝑥

Not only intrinsic axion amplitude’s  temporal variation, one can manipulate modulation

Idea 1 (ADMX is also thinking)

𝑔𝑎𝛾𝛾𝑎(𝑡)න 𝑬 𝑥 ⋅ 𝑩0 cos(𝜔𝑚𝑜𝑑𝑡) 𝑑
3𝑥

• Modulation in magnetic field
• Speed would be limited in SC magnet

Idea 2 (MADMAX original)

ℏ 𝑓 𝑡 ෠𝑏† + 𝑓∗ 𝑡 ෠𝑏 𝑃cos(𝜔𝑚𝑜𝑑𝑡)

• Modulate polarization of the photons
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Modulation in classical axion amplitude

→ Basic theory for homodyne detection (Lock-in method)
→ Enhance S/N even though losing bandwidth in quantum detection

෡𝐻 = ℏ𝜔 ෠𝑏† ෠𝑏 +
1

2
+ ℏ 𝑓 𝑡 ෠𝑏† + 𝑓∗(𝑡)෠𝑏 𝑓 𝑡 = 𝑔𝑎𝛾𝛾𝑎(𝑡)න(𝑬(𝑥) ⋅ 𝑩0)𝑑

3𝑥

Not only intrinsic axion amplitude’s  temporal variation, one can manipulate modulation

Idea 1 (ADMX is also thinking)

𝑔𝑎𝛾𝛾𝑎(𝑡)න 𝑬 𝑥 ⋅ 𝑩0 cos(𝜔𝑚𝑜𝑑𝑡) 𝑑
3𝑥

• Modulation in magnetic field
• Speed would be limited in SC magnet

Idea 2 (MADMAX original)

ℏ 𝑓 𝑡 ෠𝑏† + 𝑓∗ 𝑡 ෠𝑏 𝑃cos(𝜔𝑚𝑜𝑑𝑡)

• Modulate polarization of the photons

Controlled 𝐜𝐨𝐬(𝝎𝒎𝒐𝒅𝒕)
modulation in photon 
distribution
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Outline

• Background: classical to quantum detection
• Motivation of this talk: classical to quantum??
• Rigorous proof of classical to quantum
• Applications: coherence & homodyne with polarization
• Conclusion
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Conclusion and outlook
• Any classical axion field generates quantum coherent states of microwave photons

• Rigorous proof with little assumptions (classicality of DM axions)
• In photon counting type experiment, Poisson distribution of varying mean number of photons appear
• The quantum state of our system is “coherent thermal state” ≠ coherent signal + thermal noise 

(standard deviation of photon numbers is not a naïve sum)

• The above theorem ensures classical argument in time variation of axion signal
• Temporal coherency of axion amplitude
• Artificial modulation → homodyne detection

• To be answered
• Projective measurement → realistic quantum model of detectors
• Detector requirement →material property, what to measure?
• Is the assumption in classical axions truly reasonable?
• How to optimize the time integral → depending on coherence time of axion?
• Can we reconstruct time-varying photon distribution via finite sampling of a photon detector?

• To be developed
• Correct Monte Carlo simulation
• Response time, detection efficiency of the detectors 45
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Three ways to study dark matter candidates

WIMP 
SUSY

WISP
axions

Production in lab Signal from astrophysics DM from galaxy halo

LHC-CMS
AMS

LZ

ALPSII CAST

full knowledge in source uncertainty in astrophysical models Uncertainty in cosmological models

→Common techniques: magnets & photon science

→Common techniques: particle detection, reconstruction, PID, etc

MADMAX
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Quantum electrodynamics (single mode)

෡𝐻 = ො𝑛 +
1

2
ℏ𝜔 = ො𝑎† ො𝑎 +

1

2
ℏ𝜔

መℰ 𝒓, 𝑡 = 𝑖
ℏ𝜔

2𝜖0𝑉
ො𝑎𝑒−𝑖 𝜔𝑡−𝒌⋅𝒓 − ො𝑎†𝑒𝑖 𝜔𝑡−𝒌⋅𝒓

෡𝐻 = ො𝑛 +
1

2
ℏ𝜔 = ො𝑥1

2 + ො𝑥2
2 ℏ𝜔

መℰ 𝒓, 𝑡 = 𝑖
ℏ𝜔

2𝜖0𝑉
ො𝑥1 sin(𝜔𝑡 − 𝒌 ⋅ 𝒓) − ො𝑥2 cos(𝜔𝑡 − 𝒌 ⋅ 𝒓)

With creation annihilation operators

ො𝑎, ො𝑎† = 1

ො𝑥1, ො𝑥2 =
𝑖

2

With Hermitian quantized amplitudes

ො𝑎 ۧ𝑛 = 𝑛 ۧ𝑛 − 1

ො𝑎† ۧ𝑛 = 𝑛 + 1 ۧ𝑛 + 1

ො𝑎, ො𝑎 = ො𝑎†, ො𝑎† = 0

ො𝑥1, ො𝑥1 = ො𝑥2, ො𝑥2 = 0

ො𝑎 ≡ ො𝑥1 + 𝑖 ො𝑥2

ො𝑎† ≡ ො𝑥1 − 𝑖 ො𝑥2

Uncertainty relations

Δ መ𝐴 = መ𝐴 − 𝜙 መ𝐴 𝜙

Δ ෠𝐵 = ෠𝐵 − 𝜙 ෠𝐵 𝜙

General displacement operators

𝜙 Δ መ𝐴2 𝜙 𝜙 Δ ෠𝐵2 𝜙 ≥
1

4
𝜙 Δ መ𝐴, Δ ෠𝐵 𝜙

2
+
1

4
𝜙 መ𝐴, ෠𝐵 𝜙

2

→ The Cauchy-Schwartz’s inequality leads to Schrodinger’s uncertainty relation 

dispersion dispersion
Applying to the amplitude operators leads to

𝜎1
2𝜎2

2 ≡ 𝜙 Δො𝑥1
2 𝜙 𝜙 Δො𝑥2

2 𝜙 ≥
1

4
𝜙 Δො𝑥1, Δො𝑥2 𝜙 2 +

1

4
𝜙 Δො𝑥1, Δ ො𝑥2 𝜙 2 =

1

4
𝜙 Δො𝑥1, Δ ො𝑥2 𝜙 2 +

1

16
→ 𝜎1𝜎2 ≥

1

4
: standard deviations of amplitude operators obeys this uncertainty relation

Positive real number
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Minimum uncertainty states | ۧ𝜙𝑚𝑖𝑛
The minimum uncertainty 

𝜎1𝜎2 =
1

4
can be obtained if

ቊ
Δො𝑥2 ۧ𝜙𝑚𝑖𝑛 = zΔො𝑥1 ۧ𝜙𝑚𝑖𝑛 (𝑧 ∈ ℂ)

𝜙𝑚𝑖𝑛 Δො𝑥1, Δො𝑥2 𝜙𝑚𝑖𝑛 = 0

are applied. These conditions give
0 = 𝜙𝑚𝑖𝑛 Δො𝑥1Δො𝑥2 𝜙𝑚𝑖𝑛 + 𝜙𝑚𝑖𝑛 Δො𝑥2Δො𝑥1 𝜙𝑚𝑖𝑛 = 𝑧 + 𝑧∗ 𝜙𝑚𝑖𝑛 Δො𝑥1

2 𝜙𝑚𝑖𝑛

→ 𝑧 + 𝑧∗ = 0 → 𝑧 = 𝑖𝜆 (𝜆 ∈ 𝑅)
Substitute this condition to 𝑧

Δො𝑥2| ۧ𝜙𝑚𝑖𝑛 = 𝑖𝜆Δො𝑥1| ۧ𝜙𝑚𝑖𝑛

From the definition
ො𝑥2 − 𝜙𝑚𝑖𝑛 ො𝑥2 𝜙𝑚𝑖𝑛 | ۧ𝜙𝑚𝑖𝑛 = i𝜆 ො𝑥1 − 𝜙𝑚𝑖𝑛 ො𝑥1 𝜙𝑚𝑖𝑛 | ۧ𝜙𝑚𝑖𝑛

→ 𝜆ො𝑥1 + 𝑖 ො𝑥2 | ۧ𝜙𝑚𝑖𝑛 = 𝜆 𝜙𝑚𝑖𝑛 ො𝑥1 𝜙𝑚𝑖𝑛 + 𝑖 𝜙𝑚𝑖𝑛 ො𝑥2 𝜙𝑚𝑖𝑛 | ۧ𝜙𝑚𝑖𝑛

If we select 𝜆 = 1, we can obtain one of the minimum uncertainty states | ۧ𝛼 :
ො𝑥1 + 𝑖 ො𝑥2 | ۧ𝜙𝑚𝑖𝑛 = 𝜙𝑚𝑖𝑛 ො𝑥1 𝜙𝑚𝑖𝑛 + 𝑖 𝜙𝑚𝑖𝑛 ො𝑥2 𝜙𝑚𝑖𝑛 | ۧ𝜙𝑚𝑖𝑛

→ ො𝑎 ۧ𝛼 = 𝛼 ۧ𝛼 (𝛼 ∈ ℂ)
as an eigenstate of the annihilation operator ො𝑎, which minimizes the uncertainty of the amplitude operators ො𝑥1 and ො𝑥2

From Cauchy-Schwartz
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Coherent state | ۧ𝛼
| ۧ𝛼 is called coherent state. Its explicit representation with number states can be given by

| ۧ𝛼 = ෍

𝑛=0

∞

𝑐𝑛| ۧ𝑛

and applying ො𝑎 gives

𝛼෍

𝑛=0

∞

𝑐𝑛| ۧ𝑛 = 𝛼 ۧ𝛼 = ො𝑎 ۧ𝛼 = ෍

𝑛=0

∞

𝑐𝑛 ො𝑎| ۧ𝑛 = ෍

𝑛=1

∞

𝑐𝑛 𝑛| ۧ𝑛 − 1 = ෍

𝑛=0

∞

𝑐𝑛+1 𝑛 + 1| ۧ𝑛

Comparing the coefficients gives

𝑐𝑛+1 =
𝛼

𝑛 + 1
𝑐𝑛

The coefficient can be recursively determined

𝑐𝑛 =
𝛼

𝑛
𝑐𝑛−1 =

𝛼

𝑛

𝛼

𝑛 − 1
𝑐𝑛−2 =

𝛼

𝑛

𝛼

𝑛 − 1
…

𝛼

1
𝑐0 =

𝛼𝑛

𝑛!
𝑐0

The normalization condition gives

1 = 𝛼 𝛼 = ෍

𝑛=0

∞

෍

𝑚=0

∞

𝑐𝑚
∗ 𝑐𝑛 𝑚 𝑛 = ෍

𝑛=0

∞

෍

𝑚=0

∞
𝛼∗𝑚

𝑚!

𝛼𝑛

𝑛!
𝑐0
∗𝑐0𝛿𝑚𝑛 = 𝑐0

2෍

𝑛=0

∞
|𝛼|2𝑛

𝑛!
= 𝑐0

2𝑒 𝛼 2
→ 𝑐0 = 𝑒− Τ𝛼 2 2

Selecting one phase 𝑐0 = 𝑒− Τ𝛼 2 2 leads to 

| ۧ𝛼 = 𝑒− Τ𝛼 2 2෍

𝑛=0

∞
𝛼𝑛

𝑛!
| ۧ𝑛

Expectation value of # of photons
𝛼 ො𝑎† ො𝑎 𝛼 = 𝛼∗𝛼 𝛼 𝛼 = 𝛼 2 ≡ 𝜇
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Projection of | ۧ𝛼 onto | ۧ𝑥1 returns a Gaussian
𝑥1 𝛼 =

1

𝛼
𝑥1 𝛼 𝛼 =

1

𝛼
𝑥1 ො𝑎 𝛼 =

1

𝛼
𝑥1 ො𝑥1 + 𝑖 ො𝑥2 𝛼 =

1

𝛼
න𝑑𝑥1

′ 𝑥1 ො𝑥1 + 𝑖 ො𝑥2 𝑥1
′ 𝑥1

′ 𝛼

“Position” representation (Schrodinger representation)

𝛹(𝑥1) ≡ 𝑥1 𝛼Wave function:

ො𝑥1, ො𝑥2 =
𝑖

2
→ 𝑥1 ො𝑥2 𝑥1 ≡

1

2𝑖

𝑑

𝑑𝑥1

𝑥1 ො𝑥1 𝑥1 = 𝑥1“Position” operator:

“Momentum” operator:
𝛼𝛹 𝑥1 = 𝑥1 +

1

2

𝑑

𝑑𝑥1
𝛹 𝑥1

Schrodinger equation (in a narrow sense…)

Eigenvalue 
problem

A particular solution of this 1st order linear ordinary differential equation is Gaussian

𝛹 𝑥1 = exp(𝐴𝑥1
2 + 𝐵𝑥1 + 𝐶)

𝑑𝛹(𝑥1)

𝑑𝑥1
= 2𝐴𝑥1 + 𝐵 𝛹 𝑥1

𝐴 = −1

𝐵 = 2𝛼
𝛹 𝑥1 =

1

2𝜋
𝑒− 𝑥1−𝛼

2

The same would be applied for the “momentum” representation

𝛷(𝑥2) ≡ 𝑥2 𝛼Wave function:

ො𝑥1, ො𝑥2 =
𝑖

2
→ 𝑥2 ො𝑥1 𝑥2 ≡

𝑖

2

𝑑

𝑑𝑥2

𝑥2 ො𝑥2 𝑥2 = 𝑥2“Position” operator:

“Momentum” operator:

𝛼𝛷 𝑥2 =
𝑖

2

𝑑

𝑑𝑥2
+ 𝑖𝑥2 𝛷 𝑥2

𝛷 𝑥2 =
1

2𝜋
𝑒− 𝑥2+𝑖𝛼

2
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Projection of | ۧ𝛼 onto | ۧ𝑛 returns a Poisson distribution
When one performs photon counting experiment (for example with PMT), probability of observing n photon is

𝑃 𝑛 = 𝑛 𝛼 2 = 𝑒− Τ𝛼 2 2 ෍

𝑚=0

∞
𝛼𝑚

𝑚!
𝑛 𝑚

2

= 𝑒− Τ𝛼 2 2
𝛼𝑛

𝑛!

2

=
𝛼 2 𝑛

𝑛!
𝑒− 𝛼 2

𝛿𝑛𝑚

This is a Poisson distribution with mean number of photons 𝜇 = 𝛼 2

𝑃 𝑛; 𝜇 =
𝜇𝑛

𝑛!
𝑒−𝜇

E. H. Bellamy, NIMA 339 468-476 (1994)

It is well-known that we observed a Poisson distribution from LED, convoluted with a response function of dynodes in PMT

This 𝜇 contains 
quantum 
efficiency from a 
photon to a 
photoelectron

One typical 
way to 
calibrate a 
PMT
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