Neutrino Physics with PandaX

HAN, Ke 韩柯 (SJTU) For the PandaX Collaboration 2023/10/2

Simulated spectrum for PandaX-4T

	Sub-keV	keV	10 keV	100	keV	1 MeV	10 MeV	
Xe-136 (9%)					DE	BD and NLDBD		
Xe-134 (10%)					DBD NLD	and BD		
Xe-124 (0.1%)			Do	uble EC				
Xe-all	⁸ B solar neutrino	WIMP and other DM sign		pp net	solar utrino		alphas	

	Sub-keV	keV	10 keV		100	keV	1 Me	≥V	10 MeV	
Xe-136 (9%)						DI	3D and NL	.DBD		
Xe-134 (10%)						DBD NLC	and BD			
Xe-124 (0.1%)			D	ouble	EC					
Xe-all	⁸ B solar neutrino	WIMP and c	ther DM signals	S	pp : neu	solar trino			alphas	

PandaX LXe TPC: Total-Absorption 5D Calorimeter

- Precisely measure 3D position, energy, and timing information in the energy range from sub-keV to 10MeV
- Large monolithic volume: total absorption; ~20 x MeV y attenuation length
- Single-site (SS) and multi-site (MS) event for event topology and particle ID

Extending from keV to MeV

- Dedicated data analysis pipeline is developed for O(100 keV) O(MeV) energy range
- Improved SS and MS identification: calibration data/MC SS ratio consistent within 1.7%
- Desaturation algorithm: X-Y position reconstruction energy linearity and resolution sig PANDAX

Pa

New PMTs for next generation LXe detectors

- New 2" multi-anode R12699 PMT is an attractive option for next generation multi-purpose LXe detectors
 - High granularity, fast timing, low dark noise
 - 2" array for excellent performance at keV an MeV
 - Improved position reconstruction; better event topology; less concerns for PMT saturation; higher coverage possible
- Extensive performance testing at SJTU and R&D efforts on background control is on-going together with Hamamatsu

	Sub-keV	keV	10 ke\	/	100	keV	1 M e	V	10 MeV	
Xe-136 (9%)						DE	BD and NL	DBD		
Xe-134 (10%)						DBD NLD	and BD			
Xe-124 (0.1%)				Doubl	e EC					
Xe-all	⁸ B solar neutrino	WIMP and ot	VIMP and other DM signals		pp ne	solar utrino			alphas	

Neutrinoless Double beta decay (NLDBD)

- Neutrinoless double beta decay probes the nature of neutrinos: Majorana or Dirac
- Lepton number violating process
- Measure energies of emitted electrons

Search for ¹³⁶Xe NLDBD with LXe TPC

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)	Year
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³	2019
XENON1T	~20	0.8%	741	202.7 days	1.2×10^{24}	2022
PandaX-4T	6	1.9%	~650	~250 days	> 10 ²⁴	

韩柯, SJTU

¹³⁶Xe DBD half-life measurement

- ¹³⁶Xe DBD half-life measured by PandaX-4T: 2.27 \pm 0.03(stat.) \pm 0.09(syst.) \times 10²¹ year
- 440 keV 2800 keV range is the widest ROI
- Comparable precision with leading results
- First such measurement from a natural xenon TPC

PandaX Neutrino Physics

More accurate background models

• Better than the input values based on HPGe assay results and high energy alpha events

					Г	Outer vessel Top Dome	
Detector part	Contamination	Expected counts	Fitted counts			Outer vessel Flange	
	²³⁸ U	339 ± 129	490 ± 52	Тор	4	Inner vessel Ten Domo	
T	²³² Th	402 ± 133	670 ± 56			Inner vessel Top Dome	
Top	⁶⁰ Co	327 ± 141	550 ± 49			Threaded	1900000000
	⁴⁰ K	300 ± 156	363 ± 40		L	Top PMT, Base and Spring	
	²³⁸ U	141 ± 51	185 ± 40				
D ()	²³² Th	237 ± 119	155 ± 53	Side	€ -{	Outer vessel Barrel	
Bottom	⁶⁰ Co	159 ± 95	183 ± 48			Inner vessel Barrel	
	⁴⁰ K	89 ± 834	100 ± 39				
	²³⁸ U	475 ± 707	1070 ± 118				
0.1	²³² Th	786 ± 959	2194 ± 117		r	Bottom PMT, Base and Spring -	
Side	⁶⁰ Co	1244 ± 945	185 ± 98	Bottom		Inner vessel Bottom Dome	
	⁴⁰ K	1518 ± 835	782 ± 84	Bollom	1		
LXe	²¹⁴ Pb (²²² Rn progeny)	[0,12057]	7180 ± 152		Ľ	Outer vessel Bottom Dome -	

More Physics with ¹³⁶Xe DBD spectrum

- NME of DBD may be energy dependent and cause DBD shape change
- BSM physics, such as right-handed leptonic currents would affect the energy distribution

PHYSICAL REVIEW LETTERS 122, 192501 (2019)

with energy demonstrator $\Delta = [E_j - (E_i + E_f)/2]/m_e$ is the energy of the nuclear state $|J_k^{\pi}\rangle$ with total ang Smomentum J and parity π , and m_{e} is the electron mass. labels *i*, *j*, *f* refer to the initial, intermediate, and nuclear states, respectively, while σ is the spin and τ^{-1} isospin lowering operator. We perform nuclear shell model calculations in

configuration space comprising the $0g_{7/2}$, $1d_{5/2}$, 1 $2s_{1/2}$, and $0h_{11/2}$ single-particle orbitals for both neutron and protons, using the shell model code NATHAN [44] reproduce $M_{CT}^{2\nu} = 0.064$ from Ref. [25] with the (interaction [19] and also use the alternative MC interaction from Ref. [45], which yields $M_{GT}^{2\nu} = 0.024$. Both i actions have been used in $\partial \nu \beta \beta$ decay studies [11,46]. **S** Model NMEs for β and $2\nu\beta\beta$ decays are typically too 1. due to a combination of missing correlations beyond configuration space, and neglected two-body currents in transition operator [3]. This is phenomenologically corre with \mathbf{b}_{a} "quench \mathbf{b}_{a} " factor \mathbf{b}_{a} , or $g_{A}^{\text{eff}} = qg_{A}$. In general FIG. 2. Allowed region for the joint variation of the ¹³⁶Xe $2\nu\beta E_{\kappa}/Q$ uenching that fits GT β decays and EG2 in the same region is valid for $2\nu\beta\beta$ decays as well. Around ¹³⁶Xe

PandaX Neutrino Physics

	Sub-keV	keV	/ 10 keV		100 keV	1 N	ЛеV	10 MeV	
Xe-136 (9%)					D	BD and	NLDBD		
Xe-134 (10%)					DBD NL) and DBD			
Xe-124 (0.1%)			Dou	ble E	C				
Xe-all	⁸ B solar neutrino	WIMP and o	ther DM signals		pp solar neutrino			alphas	

¹²⁴Xe double electron capture (DEC)

- Two-neutrino / neutrinoless double electron capture (DEC)
- 2nd order weak process, $T_{1/2}$ =(1.18±0.13_{stat}±0.14_{sys})×10²² yr from XENONnT

¹²⁴Xe DEC: spectrum fit to PandaX-4T data

- Spectral and temporal fit to data for ¹²⁴Xe DEC signal peak
 - Energy resolution at 64.3keV: (5.4±0.4)%
- Measurement of ¹²⁴Xe abundance in PandaX-4T: (0.099±0.001)% ^{0.0}
 - 5% difference from natural abundance

	Sub-keV	keV	10 keV	/	100	keV	1 MeV	10 MeV
Xe-136 (9%)						DB	D and NLDBD	
Xe-134 (10%)						DBD a NLDE	and 3D	
Xe-124 (0.1%)				Double	e EC			
Xe-all	⁸ B solar neutrino	WIMP and ot	her DM sign:	als	pp neu	solar trino		alphas

PandaX Neutrino Physics

韩柯, SJTU

PandaX Neutrino Physics

韩柯, SJTU

Shape of the most important background ²¹⁴Pb

- Dedicated ²²²Rn calibration campaign to measure ²¹⁴Pb spectrum in-situ.
- ²²²Rn activity ~1 mBq/kg, 100x higher than science data.
- Measured ²¹⁴Pb spectrum is then used in the fit on science data to estimate ²¹⁴Pb level.

Shape of the most important background ²¹⁴Pb

- Dedicated ²²²Rn calibration campaign to measure ²¹⁴Pb spectrum in-situ.
- ²²²Rn activity ~1 mBq/kg, 100x higher than science data.
- Measured ²¹⁴Pb spectrum is then used in the fit on science data to estimate ²¹⁴Pb level.

Preliminary solar pp + ⁷B

Solar pp + ⁷Be neutrinos sensitivity in PandaX-xT

- PandaX-4T expected uncertainty: ~28% @ 6 ton·year
 - ²²²Rn ~3.5 uBq/kg, ⁸⁵Kr ~0.25 ppt, with uncertainty <5%
- PandaX-xT: expected uncertainty: <10% @ 8 ton·year
 - ²²²Rn ~0.5 uBq/kg, ⁸⁵Kr ~0.01 ppt, with uncertainty <2%

PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory

- Active target: 43 ton of Xenon
 - Decisive test to the WIMP paradigm
 - Explore the Dirac/Majorana nature of neutrino
 - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Improved PMT, veto, vessel radiopurity, etc
- Staged upgrade utilizing isotopic separation on natural xenon.

PandaX-xT for NLDBD

- 4 ton of ¹³⁶Xe: one of the largest DBD experiments
- Effective self-shielding: Xenon-related background dominates

	Bkg rate (/keV/ton/y)	Energy resolution	mass (ton)	Run time	Sensitivity/Lim it (90% CL, year)
PandaX-4T	6	1.9%	4	94.9 days	> 10 ²⁴
XENONnT	1	0.8%	6	1000 days	2 × 10 ²⁵
LZ	0.3	1%	7	1000 days	1 × 10 ²⁶
KamLAND-ZEN	0.002	5%	0.8 (¹³⁶ Xe)	1.5 years	3×10 ²⁶
nEXO	0.006	1%	5 (¹³⁶ Xe)	10 years	6×10 ²⁷
DARWIN	0.004	0.8%	40	10 years	2 × 10 ²⁷
PandaX-xT	0.002	1%	43	10 years	3×10 ²⁷

Possible isotope seperation/enrichment

- Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery
 - A split of odd and even nuclei
 - Further enrichment of ¹³⁶Xe
 - to improve sensitivity to spin-dependence of DM-nucleon interactions and NLDBD

Neutrino physics program at PandaX

	Sub-keV	keV	10 keV	1	100	keV	1 Me	V	10 MeV	
Xe-136 (9%)						DE	3D and NLI	DBD		
Xe-134 (10%)						DBD NLD	and BD			
Xe-124 (0.1%)				Double	e EC					
Xe-all	⁸ B solar neutrino	WIMP and o	ther DM sign	als	pp s neu	solar trino			alphas	

- Re-think the LXe TPC as a Total-Absorption 5D Calorimeter
- Fully exploit the entire energy range of LXe TPC
- Fully utilize the mulitple isotopes of natural xenon for rich physics

PandaX Neutrino Physics

Thank you very much