



#### Insertable B-Layer - installed in 2014





## THE MISSION of the LHC

#### LHC Explore the TeV energy range

Direct searches for Physics Beyond the Standard Model at the highest energies

#### Exploration of the Higgs sector

- Precision measurements of the Higgs boson properties
  - Higgs boson couplings Self coupling
  - New Higgs bosons ?

#### Precision measurements

SMALL CROSS SECTION HIGH LUMINOSITY









#### The High Luminosity LHC





#### Innovative technologies

## Superconducting magnets materials

niobium-titanium (NbTi) up to 9-10 Tesla  $\rightarrow$  niobium-tin (Nb<sub>3</sub>Sn) reaching 12-13 Tesla  $\rightarrow$ double magnet aperture of dipoles and quadrupoles

#### **Crab cavities**

rotation of the beam by providing a transverse deflection of the bunches  $\rightarrow$  to increase luminosity at collision points and to reduce beam-beam parasitic effects

New magnesium-diboride-based (MbB<sub>2</sub>) **superconding cables** 

from 20 to 100 kA  $\rightarrow$  move power converters from the LHC tunnel to new service gallery

>1.2 km (~5%) of current ring to be replaced with new components

## From LHC to HL-LHC

| 1 |
|---|

| $L = \frac{1}{r} \begin{pmatrix} f & n_{\rm b} N_{\rm b} \end{pmatrix} \frac{N_b}{r} \frac{\gamma}{R} \begin{pmatrix} f \\ \theta_{\rm cr} \xi_{\rm c} \beta^*, \sigma_{\rm c} \end{pmatrix}$ |                                                                     | Nominal LHC Nominal HL-LHC 25ns          |                                                                                                               |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|--------|
| $4\pi$ $\epsilon_N \beta^*$ crossing angle hourdass effect                                                                                                                                    | Parameter                                                           | [Design Report]                          | [standard]                                                                                                    | [BCMS] | [8b4e] |
|                                                                                                                                                                                               | Beam energy in collision [ TeV]                                     | 7                                        | 7                                                                                                             | 7      | 7      |
| maximize maximize maximize energy                                                                                                                                                             | Number of protons per bunch [ $\times 10^{11}$ ]                    | 1.15                                     | 2.2                                                                                                           | 2.2    | 2.3    |
| total beam brightness & minimize β*                                                                                                                                                           | $n_b$                                                               | 2808                                     | 2748                                                                                                          | 2604   | 1968   |
| beam-beam limit)                                                                                                                                                                              | Number of collisions in IP1 and IP5                                 | 2808                                     | 2736                                                                                                          | 2592   | 1960   |
|                                                                                                                                                                                               | Beam current [A]                                                    | 0.58                                     | 1.09                                                                                                          | 1.03   | 0.82   |
| Lingrade of several components of                                                                                                                                                             | crossing angle [ $\mu$ rad]                                         | 285                                      | 590                                                                                                           | 590    | 554    |
| the LHC and injector                                                                                                                                                                          | beam separation [ $\sigma$ ]                                        | 94                                       | 12 5                                                                                                          | 12.5   | 12.5   |
|                                                                                                                                                                                               | β* [m]                                                              | 0.55                                     | 0.15                                                                                                          | 0.15   | 0.15   |
|                                                                                                                                                                                               | $\epsilon_n  [\mu m]$                                               | 3.75                                     | 2.50                                                                                                          | 2.50   | 2.2    |
| New super-conducting triplet: <b>Iower </b> β*                                                                                                                                                | $\epsilon_L$ [eVs]                                                  | 2.5                                      | 2.5                                                                                                           | 2.5    | 2.5    |
|                                                                                                                                                                                               | Levelled luminosity $[\times 10^{34} \text{cm}^{-2} \text{s}^{-1}]$ | -                                        | 5.32                                                                                                          | 5.02   | 5.03   |
| Injector upgrade                                                                                                                                                                              | Events / crossing                                                   | 27                                       | 140                                                                                                           | 140    | 140    |
|                                                                                                                                                                                               | Levelling time [hours]                                              | -                                        | 8.3                                                                                                           | 7.6    | 9.5    |
| Increased <b>beam charge</b>                                                                                                                                                                  |                                                                     |                                          |                                                                                                               |        |        |
| Ğ                                                                                                                                                                                             |                                                                     |                                          |                                                                                                               |        |        |
| Luminosity levelling                                                                                                                                                                          |                                                                     |                                          |                                                                                                               |        |        |
|                                                                                                                                                                                               |                                                                     | C C                                      | [ C mon r                                                                                                     | 10.01  |        |
| High availability                                                                                                                                                                             | Configuration                                                       | $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$ | $\langle \mu \rangle = \int \mathcal{L} \operatorname{per} \mathcal{G} \left[ \operatorname{fb}^{-1} \right]$ | /ear   |        |
|                                                                                                                                                                                               | Baseline                                                            | 5 1                                      | 40 250                                                                                                        |        |        |
| Aim at 3000 events/fb (4000 events/fb)                                                                                                                                                        | Ultimate                                                            | 7.5 2                                    | .00 >300                                                                                                      |        |        |
|                                                                                                                                                                                               |                                                                     |                                          |                                                                                                               |        |        |

Increased pile-up

from **20** (LHC nominal) via **60** (LHC today)

to 140 (HL-LHC baseline) or even 200 (HL-LHC ultimate) with L=7.10<sup>34</sup>Hz/cm<sup>2</sup>

Triggering on low-p⊤ objects for precision physics

Low occupancy detectors, highly segmented

#### The PILE-UP CHALLENGE

ATLAS was designed to handle a level of pile-up with  $<\mu>=20$ .

In 2017, the level of pile-up largely exceeded the design value =37.8 events/BC µmax~70 events/BC

ATLAS has developed an efficient strategy to mitigate the impact of pile-up in event reconstruction and physics analysis.

Essential expertise towards detector design for HL-LHC.



#### The PILE-UP CHALLENGE: PERFORMANCE at HIGH PILE-UP





#### **Electron reconstruction**

- p<sub>T</sub> dependence tracked by Monte Carlo
- Lower efficiency in data w.r.t MC
  - known mis-modelling, differences in shower shapes

#### **Flavour tagging**

Mean number of b-tagged jets on opposite-sign eµ events not affected by pileup

#### **Standard Model Production Cross Section Measurements**

[dd]

Ь

1011

 $10^{6}$ 

10<sup>5</sup>

 $10^{4}$ 

10<sup>3</sup>

10<sup>2</sup>

 $10^{1}$ 

1

 $10^{-1}$ 

 $10^{-2}$ 

**1 fb** 10<sup>-3</sup>

**Δ O** total (2x)

П

О.

incl

dijets

O

**^** 0

□ <u>∧</u> O inelastic





1 fb

 $W^{\pm}W^{\pm}$ Δ

WZ

#### The main proton-proton physics goals in a nutshell

#### Run 1 (8 TeV)

- Discovery of Higgs boson
- Searches for additional new physics (negative)
- Observation of rare processes, such as  $\underline{B}_s \rightarrow \mu\mu$
- Precision measurements of Standard Model processes
- Study of *CP* asymmetries in <u>B<sub>s</sub></u> sector

#### Run 2 & 3 (13-14 TeV)

- Searches for new physics
- Improved measurements of Higgs couplings in main channels
- Consolidation / observation of Higgs channels
- Measurement of rare Standard Model processes & more precision
- Improved measurements of rare *B* decays and *CP* asymmetries

#### HL-LHC (14 TeV)

- Precision measurements of Higgs couplings
- Observation of very rare Higgs modes
- Ultimate new physics search reach (on mass & forbidden decays, eg, FCNC)
- Ultimate SM & HF physics
  precision for rare processes



## HIGGS BOSON COUPLINGS at HL-LHC





## HIGGS BOSON COUPLINGS at HL-LHC



ATL-PHYS-PUB-2014-016



| With 3000 events/fb, precision of | on Higgs boson couplings to |
|-----------------------------------|-----------------------------|
| W,Z                               | : 3%                        |
| μ                                 | : 7%                        |
| t, b,τ :                          | : 8-12%                     |

## VECTOR BOSON FUSION at HL-LHC

q

q





**3000** events/fb <µPU>=140, 200

Look for forward jets with p<sub>T</sub>>30 GeV with Higgs boson decay products between jets

After event selections in 3000 events/fb ZZ 190 signal events and 330 background WW 200 signal events and 410 background

Results are presented with different assumptions on systematic uncertainties (full or none)



|              | ZZ        | ZZ        | WW        | WW        |
|--------------|-----------|-----------|-----------|-----------|
|              | <µpu>=200 | <µpu>=200 | <µPU>=200 | <µpu>=200 |
|              | FULL      | NONE      | FULL      | NONE      |
| Δμ           | 0.18      | 0.15      | 0.20      | 0.14      |
| Significance | 7.2 σ     | 10.2 σ    | 5.7 σ     | 8.0 σ     |

W

W

H

7th May 2018

## VECTOR BOSON SCATTERING at HL-LHC

ATL-PHYS-PUB-2013-006 LHCC-G-166







Sensitive test of the vector boson vertices in the standard model.

At HL-LHC, with 3000 events/fb

Clean observation of the W±W±, ZZ and WZ scattering above backgrounds

Sensitive to dimension-8 operators at scales of ~1 TeV

Significance of electroweak  $W \pm W \pm jj$ production at  $11\sigma$ 

Precision on cross section  $\Delta\sigma/\sigma=5.9\%$ 









Phys.Lett.B732(2014) 1420-149

## **DI-HIGGS PRODUCTION at HL-LHC**





Probe the nature of the Higgs Boson Self Coupling

Ð

#### DI-HIGGS PRODUCTION at HL-LHC: HH→bbbb

24



Extrapolation from Run 2 results

pTjet>75 GeV FULL

systematic uncert.

-7.4<λ/λsm<14

11.5

Assume the Run 2 detector, trigger and flavour tagging, not yet taking into account the expected pile-up at HL-LHC

Run 2 trigger threshold:

 $p_T^{jet}>40 \text{ GeV} \rightarrow p_T^{jet}>75 \text{ GeV} at HL-LHC}$ 





λннн

 $\sigma/\sigma_{SM}$  excluded

at 95% CL

## DI-HIGGS PRODUCTION at HL-LHC: HH→bbγγ







## HIGGS BOSON DECAY to $\mu^+\mu^-$ at HL-LHC





| [%] H 10 <sup>-1</sup><br>10 <sup>-4</sup><br>10 <sup>-4</sup><br>80<br>100<br>120<br>125 | <sup>gg</sup><br>Zγ<br>140 160<br>GeV | сие ом ох эзоннонт<br>ZZ<br>180 _ 200<br>М <sub>н</sub> [GeV] |
|-------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|
| $\mathcal{L}$ [fb <sup>-1</sup> ]                                                         | 300                                   | 3000                                                          |
| N <sub>ggH</sub>                                                                          | 1510                                  | 15100                                                         |
| N <sub>VBF</sub>                                                                          | 125                                   | 1250                                                          |
| $N_{WH}$                                                                                  | 45                                    | 450                                                           |
| N <sub>ZH</sub>                                                                           | 27                                    | 270                                                           |
| N <sub>ttH</sub>                                                                          | 18                                    | 180                                                           |
| $N_{Bkg}$                                                                                 | 564000                                | 5640000                                                       |
| $\Delta_{Bka}^{sys}$ (model)                                                              | 68                                    | 110                                                           |
| $\Delta_{Bkg}^{\overline{sys'}}$ (fit)                                                    | 190                                   | 620                                                           |
| $\Delta_{S+B}^{stat}$                                                                     | 750                                   | 2380                                                          |
| Signal significance                                                                       | $2.3\sigma$                           | $7.0\sigma$                                                   |
| $\Delta \mu / \mu$                                                                        | 46%                                   | 21%                                                           |

## SUMMARY of HL-LHC HIGGS BOSON RESULTS

| K-L |
|-----|
|     |
| 1   |
|     |

| Channel           | Result                                            | HH channel                                  | Result                                              |  |
|-------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------|--|
| VBF H→W+W-        | Δμ/μ=14 to 20%                                    | НН→bbтт                                     | 0.6 σ                                               |  |
| VBF H→ZZ→4I       | Δµ/µ=15 to 18%                                    | (FULL uncertainties)                        | -4<λ <sub>ΗΗΗ</sub> /λ <sub>SM</sub> <12            |  |
| ttH, H→γγ         | Δμ/μ=17 to 20%                                    | HH→bbbbb                                    | -3 4 < )                                            |  |
| VH, Н→үү          | Δµ/µ=25 to 35%                                    | (FULL uncertainties)                        | - <b>3.</b> 4                                       |  |
| off-shell H→ZZ→4l | Δµ/µ=14 to 50%<br>Гн=4.2 <sup>+1.5</sup> -2 1 MeV | HH→bbγγ<br>(statistical uncertainties only) | 1.5 σ<br>0.2<λ <sub>ΗΗΗ</sub> /λ <sub>SM</sub> <6.9 |  |
| H→Zγ              | Δμ/μ=30%      3.9σ      ttHH, HH→bbbb             |                                             | 0 35 g                                              |  |
| Η→J/ψ γ           | BR<44x10⁻⁵ @<br>95% CL                            | (statistical uncertainties only)            | 0.550                                               |  |

#### Very rare decays



B₅→µµ



Prospective study by CMS for the rare  $B_s \rightarrow \mu\mu$  decay

CMS-PAS-FTR-13-022

#### SEARCHES at the ENERGY FRONTIERE

3000 fb<sup>-1</sup>

2.4 TeV

| AX  |
|-----|
| Ce. |
|     |
| -L  |



1.2 TeV

1.3 TeV

3.1 TeV

820 GeV

650 GeV

#### Exotics

7th May 2018

Luminosity increase





© P. Ferreira da Silva at Moriond EW, 2016

#### The ATLAS detector







## PHASE-I UPGRADE LAr Muons - New Small Wheel TDAQ



#### The ATLAS detector: Phase-I upgrades





## The ATLAS Liquid Argon Calorimeter

#### LAr calorimeters are expected to continue to operate reliably during the HL-LHC data taking period



#### Liquid Argon Calorimeter Readout Electronics





#### Liquid Argon Phase-I Upgrade: improved trigger

N J Buchanan et al 2008 JINST 3 P03004 (Fig. 17)



ATLAS Liquid Argon Calorimeter Phase-I Upgrade TDR



## Liquid Argon Phase-I Upgrade: improved trigger





124 LTDB 320 channels/board Digitise signals at 40 MHz



Pre-production LTDB with fiber trough

31 LDPS LArC

124 AMCs LATOME 320 channels/AMC Reconstruct BCID,

E<sub>T</sub> at 40 MHz

## LAr Phase-I demonstrator

Pre-prototypes with coverage of  $\Delta\eta x \Delta \phi = 1.5 \times 0.4$  installed in 2014

Demonstrate the feasibility and robustness of the system

Collecting data during LHC Run 2, parasitically System being updated with pre-production boards

Validation of energy computation by comparing to the main readout system

Study of pulse shape and noise level





## TDAQ upgrade





#### Trigger-DAQ Phase-I Upgrade







Improved LAr calorimeter segmentation for L1

eFex, jFex, gFex....







New Small Wheel for improvement b a c k g r o u n d rejection at L1





**FELIX board** 

## Sources of Level 1 muon trigger at LHC



#### New Small Wheel





#### New Small Wheel in construction







FINAL ADJUSTMENTS for PRODUCTION - VERY INTENSE CONSTRUCTION PERIOD AHEAD of US for INSTALLATION DURING LS2



# PHASE-II UPGRADE

Calorimeters

Muon System

TDAQ

High Granularity Timing Detector


#### The ATLAS detector: Phase-II upgrades



## Trigger/DAQ upgrade for HL-LHC



Changes in the readout system have strong implications in the upgrade detector and electronics design.

| -               |                   |                   |                      |
|-----------------|-------------------|-------------------|----------------------|
| Rate<br>Latency | Run 2             | Run 3<br>Phase I  | Run4<br>Phase II     |
| Level 0         | -                 | -                 | 1-4 MHz<br>6-10 μs   |
| Level 1         | 100 kHz<br>2.5 μs | 100 kHz<br>2.5 µs | 400-800 kHz<br>35 μs |
| HLT             | 1kHz              | 1kHz              | 10 kHz               |



# Trigger and Data Acquisition



R

# The ATLAS INNER DETECTOR







# ATLAS Inner Tracker -ITk- for HL-LHC



| 200 pile-up events                            | occupancy            | high granularity, material |
|-----------------------------------------------|----------------------|----------------------------|
| 10 <sup>16</sup> neq/cm <sup>2</sup> , 10 MGy | conception, tests    | modularity                 |
| 3000 events/fb                                | 2026-2037            | robust                     |
| VBF/VBS                                       | Increased η coverage | η <4                       |

# The High-Luminosity Challenge

#### Very high pileup

EXPERIN

7th May 2018



Intonco radiation

- Need maximal luminosity to achieve physics goals inst. Lumi. : 7.5 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> Design for peak leveled luminosity of 7.5x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> mean # of int. per bunch : <up ~ 200 ( high track density , high radiation ) Corresponds to average pileup of ~200 collisions/crossing
- Aim for integrated luminosity of 3000 fb<sup>-1</sup> and بمامية فالمقالم متربه مالم

#### ATLAS Inner Tracker -ITk- for HL-LHC





#### ITk HOME





# ITk: The new ATLAS Inner Tracker

#### **Motivation**

Replacement of the central tracking detector in ATLAS.

Essential to manage the higher track densities at the anticipated luminosities. Essential to adapt the detector technologies to the higher radiation levels

Layout has converged on a **silicon pixel** (5 layers in the barrel, confined to a cylinder of R=34.5 cm around the beam pipe) + a **silicon strip** system (4 oute layers in the barrel).

Extension of  $\eta$  coverage to 4.0: requires novel technical advances



#### ITk - MATERIAL





Thinner sensors Improved (modern) material structure Titanium tubes for cooling Sensors inclined in extended barrel section

#### ITk - PERFORMANCE



#### Excellent capability to resolve the position and momentum

Transverse impact parameter (IP) resolution do similar to current ID

Run-2 performance better at very high momentum due to analog clustering calibration while such calibrations are not yet ready for ITk

ITk with analogue clustering expected to provide similar resolution as for the current ID

Significant improvements in the longitudinal IP resolution  $z_0$ .

Reduction of pixel pitches from 250/400  $\mu$ m to 50  $\mu$ m for ITk.

Momentum resolution substantially improved by high precision measurements along the full track length provided by the full silicon tracker





# ITk- pixels

The TDR baseline design was defined aiming at

> 5~hits close to the interaction point with high granularity and accuracy  ${\sim}10~\mu m$ 

> 9 precision hits over the full acceptance (-4< $\eta$ <4) and up to R~1m

Minimisation of material over the full  $\boldsymbol{\eta}$  acceptance

Best physics reach: good b-tagging, efficient reconstruction in dense jets and in high pile-up environnement, precise track & vertex measurements

# Short barrel followed by inclined modules and the by disks (of different coverage: a measurement layer is not necessarily coplanar)



Number of Silicon Hits

30

25

20

15

ATLAS Simulation

35⊢ Inclined Duals

100

800

600

400

200

# ITk - pixels sensors

Ż

Sensor technology must be tailored to the radiation environnement (and financial constraints)

The baseline for ITk-pixel is **3D** for the innermost layer(s) and **planar** elsewhere.



ATLAS Inner Tracker -ITk- for HL-LHC - pixels frontend electronics



Synergic development with CMS (RD53) to design FE pixel ASIC for HL-LHC.

Main characteristics

Increased radiation hardness using 65nm technology in TSMC

Smallest pitch for hybrid LHC application so far, 50x50  $\mu m^2$  (possibility for 25x100  $\mu m^2$ )

Highest data rate achievable per ASIC: 5Gbps

| Technology                                  | 65nm CMOS                                               |  |  |
|---------------------------------------------|---------------------------------------------------------|--|--|
| Pixel size                                  | 50x50 um²                                               |  |  |
| Pixels                                      | 192x400 = 76800 (50% of production chip)                |  |  |
| Detector capacitance                        | < 100fF (200fF for edge pixels)                         |  |  |
| Detector leakage                            | < 10nA (20nA for edge pixels)                           |  |  |
| Detection threshold                         | <600e-                                                  |  |  |
| In -time threshold                          | <1200e-                                                 |  |  |
| Noise hits                                  | < 10 <sup>-6</sup>                                      |  |  |
| Hit rate                                    | < 3GHz/cm² (75 kHz avg. pixel hit rate)                 |  |  |
| Trigger rate                                | Max 1MHz                                                |  |  |
| Digital buffer                              | 12.5 us                                                 |  |  |
| Hit loss at max hit rate (in-pixel pile-up) | ≤1%                                                     |  |  |
| Charge resolution                           | ≥ 4 bits ToT (Time over Threshold)                      |  |  |
| Readout data rate                           | 1-4 links @ 1.28Gbits/s = max 5.12 Gbits/s              |  |  |
| Radiation tolerance                         | 500Mrad at -15°C                                        |  |  |
| SEU affecting whole chip                    | < 0.05 /hr/chip at 1.5GHz/cm <sup>2</sup> particle flux |  |  |
| Power consumption at max hit/trigger rate   | < 1W/cm <sup>2</sup> including SLDO losses              |  |  |
| Pixel analog/digital current                | 4uA/4uA                                                 |  |  |
| Temperature range                           | -40°C ÷ 40°C                                            |  |  |





![](_page_50_Picture_1.jpeg)

### ATLAS Inner Tracker - ITk- for HL-LHC - pixel schedule

![](_page_51_Picture_1.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

# ATLAS Inner Tracker - ITk- for HL-LHC - Strips

![](_page_53_Picture_1.jpeg)

Key components Sensors ASICS Optoelectronics System construction Modules Staves/petals Structures System Powering Reliability

# ATLAS Inner Tracker - ITk- for HL-LHC - Strips Sensors

![](_page_54_Picture_1.jpeg)

![](_page_54_Figure_2.jpeg)

# ATLAS Inner Tracker -ITk- for HL-LHC - Strips Module

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

#### 18k modules 25k hybrids 234k ADC130\* 60M channels

![](_page_55_Figure_4.jpeg)

![](_page_55_Figure_5.jpeg)

![](_page_55_Figure_6.jpeg)

![](_page_55_Figure_7.jpeg)

# ATLAS Inner Tracker -ITk- for HL-LHC - Strips staves

![](_page_56_Figure_1.jpeg)

Modules are rotated for stereo reconstruction

Opposite stereo angle for modules on bottom of stave

Services

Bus tape provides LV/HV and data transmission to/from End of Stave (EoS)

- Embedded cooling tubes
- EoS optoelectronics: data to/from counting room

# ATLAS Inner Tracker - ITk- for HL-LHC - Strips Construction

![](_page_57_Picture_1.jpeg)

![](_page_57_Figure_2.jpeg)

# **S**

#### ATLAS Inner Tracker - ITk- for HL-LHC - Strips schedule

![](_page_58_Figure_2.jpeg)

## Liquid Argon Calorimeter Readout Electronics

![](_page_59_Picture_1.jpeg)

![](_page_59_Figure_2.jpeg)

7th May 2018

![](_page_60_Picture_1.jpeg)

The frontend electronics was qualified to sustain radiations up to ~700 evts/fb At HL-LHC expect to accumulate 3000 (up to 4000) evts/fb

In 2025 the electronics will be 20 years old Processes used for fabrication are no more available.

Current LAr electronics readout incompatible with the planned upgrade of the Trigger/DAQ system,

The frontend on-detector electronics as well as the backend off-detector electronics will be replaced for HL-LHC.

# Liquid Argon calorimeter Phase-II electronics upgrade

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)

Liquid Argon Calorimeter

#### Dynamic range from MIP to multi-TeV: 16 bits 2-gain system, 14-bit ADC

#### Linearity

~1‰ up to ~300 GeVfew % at high energies

#### TDAQ

Compatibility with 10/35  $\mu$ s buffer 1.7  $\mu$ s latency for L0 input

#### Noise: electronics + pile-up

electronics noise < MIP signal for calibration reduction of out-of-time pile-up with complex digital filtering algorithms optimise analog shaper characteristics to minimise total noise deter digital filtering: baseline CR-(RC)<sup>2</sup> shaping, 13 ns shaping time (programmable)

![](_page_61_Figure_11.jpeg)

- 1524 frontend boards FEB2
- 372 LAr Signal processor units

# Tiles calorimeter Phase-II electronics upgrade

![](_page_62_Figure_1.jpeg)

PATLA

![](_page_63_Picture_0.jpeg)

The ATLAS Muon system at LHC

![](_page_64_Figure_1.jpeg)

The ATLAS muon system at the HL-LHC

![](_page_65_Figure_1.jpeg)

New Small Wheel New TGCs with high resolution to cope with background at  $|\eta| \sim 2.7$ New thin-gap RPCs to close acceptance gaps of the barrel muon trigger New sMDT chambers to free space for new RPCs New on- and off-chamber electronics for new trigger architecture

#### High Granularity Timing Detector

![](_page_66_Picture_2.jpeg)

![](_page_66_Figure_3.jpeg)

z<sub>0</sub> resolution [mm]

![](_page_67_Picture_0.jpeg)

7TeV Run 1
8TeV Run 1
13TeV Run 2
14TeV Run 3 (Phase-I)
14TeV Run > 3 (Phase-II)

**S** 

25 years

#### **CONCLUSIONS - OUTLOOK**

# J.

#### A bright futur for ATLAS

#### ATLAS is engaged in several upgrades

Maintain trigger capability for low pt objects

Replace detectors as pile-up and radiation increase, preserving or improving detector performance Include new detector (e.g. HGTD) to improve pile-up rejection and gain redundancy

#### 2014 Insertable B-layer

#### 2017-2018 Fast Track Trigger being commissioned

#### 2019-2020 - LS2 Mainly trigger upgrade

New Small Wheel

LAr trigger upgrade

**TDAQ** upgrade

#### **2024-2025 - LS3** Replace detectors and electronics when necessary

Inner tracker ITk LAr & Tiles electronics + Tiles mini-drawers Muon chambers improvement TDAQ

#### And an exiting present in addition

## ATLAS Today

![](_page_69_Picture_1.jpeg)

Integrated luminosity per day

Integrated luminosity vs day

![](_page_69_Figure_3.jpeg)

In two weeks (still LHC ramp-up), more data accumulated than in 2015! Data taking efficiency in 2018: ~93%

ATLAS Run Coordinator: Masaya Ishino

![](_page_70_Picture_0.jpeg)

# BACKUP

![](_page_71_Picture_0.jpeg)

#### TRIGGER at HL-LHC: example menu

Table 6.4: Representative trigger menu for 1 MHz Level-0 rate. The offline p<sub>T</sub> thresholds indicate the momentum above which a typical analysis would use the data.

|                                  | Run 1               | Run 2 (2017)            | Planned                                |       | After      | Event               |
|----------------------------------|---------------------|-------------------------|----------------------------------------|-------|------------|---------------------|
|                                  | Offline $p_{\rm T}$ | Offline $p_{T}$         | HL-LHC                                 | L0    | regional   | Filter              |
|                                  | Threshold           | Threshold               | Offline $p_{\rm T}$                    | Rate  | tracking   | Rate                |
| Trigger Selection                | [GeV]               | [GeV]                   | Threshold [GeV]                        | [kHz] | cuts [kHz] | [kHz]               |
| isolated single e                | 25                  | 27                      | 22                                     | 200   | 40         | 1.5                 |
| isolated single $\mu$            | 25                  | 27                      | 20                                     | 45    | 45         | 1.5                 |
| single $\gamma$                  | 120                 | 145                     | 120                                    | 5     | 5          | 0.3                 |
| forward e                        |                     |                         | 35                                     | 40    | 8          | 0.2                 |
| di-7                             | 25                  | 25                      | 25,25                                  |       | 20         | 0.2                 |
| di-e                             | 15                  | 18                      | 10,10                                  | 60    | 10         | 0.2                 |
| di-µ                             | 15                  | 15                      | 10,10                                  | 10    | 2          | 0.2                 |
| $e - \mu$                        | 17,6                | 8,25 / 18,15            | 10,10                                  | 45    | 10         | 0.2                 |
| single $\tau$                    | 100                 | 170                     | 150                                    | 3     | 3          | 0.35                |
| di-τ                             | 40,30               | 40,30                   | 40,30                                  | 200   | 40         | 0.5 <sup>+++</sup>  |
| single <i>b</i> -jet             | 200                 | 235                     | 180                                    | 25    | 25         | 0.35 <sup>+++</sup> |
| single jet                       | 370                 | 460                     | 400                                    | 25    | 25         | 0.25                |
| large-R jet                      | 470                 | 500                     | 300                                    | 40    | 40         | 0.5                 |
| four-jet (w/ b-tags)             |                     | 45 <sup>†</sup> (1-tag) | 65(2-tags)                             | 100   | 20         | 0.1                 |
| four-jet                         | 85                  | 125                     | 100                                    | 100   | 20         | 0.2                 |
| $H_{\mathrm{T}}$                 | 700                 | 700                     | 375                                    | 50    | 10         | 0.2 <sup>+++</sup>  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | 150                 | 200                     | 210                                    | 60    | 5          | 0.4                 |
| <b>VBF</b> inclusive             |                     |                         | $2x75 \text{ w} / (\Delta \eta > 2.5)$ | 33    | 5          | $0.5^{+++}$         |
|                                  |                     |                         | & $\Delta \phi < 2.5)$                 |       |            |                     |
| B-physics <sup>††</sup>          |                     |                         |                                        | 50    | 10         | 0.5                 |
| Supporting Trigs                 |                     |                         |                                        | 100   | 40         | 2                   |
| Total                            |                     |                         |                                        | 1066  | 338        | 10.4                |

<sup>+</sup> In Run 2, the 4-jet *b*-tag trigger operates below the efficiency plateau of the Level-1 trigger. <sup>++</sup> This is a place-holder for selections to be defined.

<sup>+++</sup> Assumes additional analysis specific requires at the Event Filter level


## Preserve or improve low p<sub>T</sub> threshold for high precision physics



Figure 2.9: Expected 95% C.L. upper limit on the cross-section ratio  $\sigma(HH \rightarrow 4b)/\sigma(HH \rightarrow 4b)_{SM}$  as a function of the minimum  $p_{\rm T}$  requirement applied to the fourth-leading jet, assuming that systematics are not a strong limitation on the result. Results with systematics show similar trigger impacts. For a more detailed discussion, see Section 6.13.