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Preliminaries 

Quantum tomography is a task to estimate the density matrix structure of 
unknown input state

It generally requires exponentially many sampling copies (𝑂(4𝑛))[1] by the number 
of qubits 𝑛.

[1] J. Acharya, arXiv:2502.18170 (2025)



Fidelity with 𝜎Hamiltonian H

Shadow tomography[1] seeks a method to estimate the designated 𝑀 number of 
physical properties of the unknown quantum states, hence reducing the required 
sampling complexity.    

For the linear property, the task is to estimate 
tr(𝜌O) for the given observable O,  not the 
whole 𝜌.

[1] S. Aaronson, arXiv:1711.01053 (2017)



<Shadow tomography>    (ℰ: unitary ensemble)

𝜌
(Unknown)

𝑈 ∈ ℰ

Obtain 
measure

ment 
outcome 
ۧ|𝕓 ∈ ℤ2

𝑛

𝑈 ۧ|𝕓 †𝕓|𝑈ۦ

snap shot

 
tr(O𝜌) = 𝔼𝑈∈ℰ σ𝕓 𝕓 𝑈𝜌𝑈† 𝕓 𝑡𝑟{𝑂ℳ−1 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ }

ℳ 𝜌 = 𝔼𝑈∈ℰ෍

𝕓

𝕓 𝑈𝜌𝑈† 𝕓 ⋅ 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ

ℳ−1 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ : classical shadow, ℳ−1 exists for IC POVM.

Measurement channel



 tr(O𝜌) = 𝔼𝑈∈ℰ σ𝕓 𝕓 𝑈𝜌𝑈† 𝕓 𝑡𝑟{𝑂ℳ−1 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ }

ℳ−1 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ : classical shadow.

<Algorithm>  (Sampling copies, N = 𝑅𝐾)

(1) We randomly choose 𝑈 ∈ ℰ.

(2) Enact 𝑈 to 𝜌

(3) Measure with computational basis to obtain ۧ|𝕓 ∈ ℤ2
𝑛

(4) Take the estimator 𝑚𝑖 = 𝑡𝑟 𝑂ℳ−1 𝑈 ۧ|𝕓 †𝕓|𝑈ۦ

(5) Repeat  (1)~(4)  to get 𝑚1, 𝑚2, …𝑚𝐾 and set ෠𝑂𝑗 =
1

𝐾
σ𝑖=1
𝐾 𝑚𝑖

(6) Repeat (5) 𝑅 times and conclude ෠𝑂 = 𝑚𝑒𝑑𝑖𝑎𝑛{ ෠𝑂1, ෠𝑂2 , … , ෠𝑂𝑅}.  



A representative shadow tomography is random Clifford tomography [1]. 

𝜌
(Unknown)

Uniformly 
sampled 
𝑈 ∈ 𝐶𝑙𝑛

Obtain 
measure

ment 
outcome
ۧ|𝕓 ∈ ℤ2

𝑛.

Estimator m is, 

Shadow norm

[1] Huang,H-Y et al. Nat. Phys 16 (10),1050-1057 (2020)

Sampling copies 



Random Clifford tomography needs 𝑂 𝑛 −depth neighboring Clifford blocks

However, 𝑂 log 𝑛 -depth Clifford blocks are sufficient[1] for k-local observable estimation

𝜌
(Unkno

wn)

log(n)-depth blocks

outcome

ۧ|𝕓 ∈
ℤ2
𝑛.

𝑑: circuit depth

[1] C. Bertoni et al., Phys. Rev. Lett. 133,020602



However, random Clifford sampling circuit is very noisy in current setups. 

Small noise in 𝑈 may rise 
much bigger bias of the 
estimation

Recently, there have been many researches about 
Error mitigation for the classical shadow[1,2].

[1] D. E. Koh et al., Quantum 6 776 (2022)
[2] S. Chen et al., PRX Quantum 2, 030348 (2021)



<Previous works>

Efficient noise benchmarking for shallow circuit is known[2].

Full random Clifford noise benchmarking can be efficient, but 
assumes gate-independent noise[1].
PEC exponentially increases by the gate count[4].
 
[1] S. Chen et al., PRX Quantum 2, 030348 (2021)
[2] H. T. Hu et al., Nat. Comm. 16, 2943 (2025)
[3] K. Bu et al., npj Quantum 10, 6 (2024) 
[4] PRX Quantum 5, 010324 (2024)

Randomized benchmarking of Pauli transfer matrix (PTM)[1,2,3]  

Probabilistic error cancellation (PEC)[4]>



<Problem>

We assume single qubit unitary is free. Noise is gate-dependent.

(1) Sample-improved unbiased mitigation scheme of noisy (shallow or full) Clifford shadow?

(2) High-order stability of Clifford shadow under unknown noise? [1]

𝑤 > 1 ?

[1] R. Brieger Phys. Rev. Lett. 134, 090801 (2025)



Read-out error of Clifford measurement

𝜌
(Unknown)

Uniformly 
sampled 
𝑈 ∈ 𝐶𝑙𝑛

Obtain 
measure

ment 
outcome
ۧ|𝕓 ∈ ℤ2

𝑛.

𝒩𝑈: (Unital) Noise channel after unitary 𝑈.

Effective noise: Read-out error.

(Bi-stochastic)

𝑔(𝑈): Ideal measurement distribution, 𝜇(𝑈): Noisy measurement distribution

Read-out errors[1]

[1] S. Bravyi et al.,  Phys. Rev. A 103, 042605 (2021)
[2] P. D. Nation et al., PRX Quantum 2, 040326 (2021)



<Pauli noise>

𝜌
(Unkno

wn)

outcome

ۧ|𝕓 ∈
ℤ2
𝑛.

𝑈1 𝒩1
…𝑈2 𝒩2 𝑈𝐿 𝒩𝐿

Each Clifford layer undergoes Pauli 
noise with probability 𝑝(𝑙).



𝜌
(Unkno

wn)

outcome

ۧ|𝕓 ∈
ℤ2
𝑛.

𝑈1 𝒩1
…𝑈2 𝒩2 𝑈𝐿 𝒩𝐿

We omit the upper-script (U) for convenience

How to sample by g? 

Read-out error function 
(Samplable!)

Ideal!!



<Solution 1: Approximation>

(Matrix equation)

Samplable!



<Solution 2: (unbiased) Walsh-Hadamard transform>

:Walsh-Hadamard (WH) transform (or Fourier transform)

∙ : element-wise product

The solution is well-defined, i.e. Ƹ𝑝 has no zero element.

<*Product rule>



Recall

(Result) Robust classical shadow under read-out error

<Full random Clifford>

estimator



<Theorem: Sampling efficiency for full random Clifford>

(1) Noise has a low-fluctuation : sampling efficient
(2) This factor can be ignored for low-magic observables

Pure case: 

Can we calculate the shadow 

Algorithm :  (1)  We sample

(2) Take the esitmator



It normally takes 

However, there is a case we can calculate the shadow efficiently

Example:Fidelity estimation with stabilizer state

An arbitrary stabilizer state has a following expression (standard form), 

𝑄𝜙:Quadratic function, 𝑢𝜙, 𝑣𝜙: binary vector

We can regard that 

Affine subspace



Therefore,

Total time: time to calculate Ƹ𝑝𝑐
(𝑉)

× 2dim 𝐴⊥ .

dim 𝐴⊥ = the number of H-vacancy in the randomly sampled 
Clifford unitary

HF Sw H HF P

The gate sequence of random Clifford unitary

(HF:Hadamard-Free, Sw: Swapping, P: Pauli)

Single-depth H

(Mallow distribution)

We set 

copies are calculated in poly-time (M: number of target 
stabilizer state)

[1]

[1] S. Bravyi et al., IEEE Trans. Inf. Theor. 67 (7) 4546-4563 (2021)  



(ex) 

M=100 number of stabilizer states are targets, 
c=5, 𝛿𝐻𝑓=0.01, we can hold 𝑁 ≪ 𝑛6 ⋅ 0.0001 (∼ 1562500 𝑓𝑜𝑟 𝑛 = 50) copies. 

Total time: time to calculate Ƹ𝑝𝑐
(𝑉)

× 𝑂(𝑛5).

? (Next problem)

(Sol) it needs 𝑂(𝑛2)-time.

(each can be computed in constant-time, G: gate-count)



5-qubit GHZ state fidelity estimation,

Full random Clifford tomography with depol-rate 0.05 

(target value=1)

PEC: gate-by-gate probabilistic error cancellation

CFWHT: Our method

𝑈1 𝒩1 ℛ1

𝑈2 𝒩2 ℛ2

𝑈3 𝒩3 ℛ3

𝑈4 𝒩4 ℛ4

PEC scheme

𝑝

Compressed&
Marginalized

‘Sub-multiplicativity’



<Shallow (d-depth) Clifford shadow>

We recall that 

𝕓 is sampled by 𝜇.  Ƹ𝑝𝑆𝑉 𝑎 𝑧
 is 

calculated efficiently
Always efficient!!



<Theorem: Sampling efficiency for d-depth shallow Clifford shadow>

Given a Pauli observable 

where,

For the pure case, 

<Tighter analysis from Ref.[1]… for depolarizing noise>

,which is tighter than 
[1]

[1] H. Y. Hu et al., Nat. Comm. 16, 2943 (2025)



<Challenges>

(1) How to boost the shadow calculation speed in general?

(2) How do we reduce the sampling when the noise fluctuation of 
random Clifford is large? 



(Result) Graph state benchmarking and high-order stability

What if the noise is arbitrary and unknown? 

Even after twirled, additional noise occurs 
during the interaction with the environment[1]

𝑈1 𝒩1 𝑈2 𝒩2

𝑈3 𝒩3 𝑈4 𝒩4

Each (twirled)noise is 
learned in a restricted 
space[1,2]

𝑈1 𝒩1

𝑈2 𝒩2

𝑈3 𝒩3

𝑈4 𝒩4

(Time)

(Real simulation)

(Noise learning)

(Time correlation)

Bath

[1] H. T. Hu et al., Nat. Comm. 16, 2943 (2025)

[1] S. Endo et al., Phys. Rev. X 8, 031027 (2018)
[2] S. Chen et al., Nat. Comm 14, 52 (2023)



<Solution>

We use the graph state measurement

𝜌
(Unknown)

Uniformly 
sampled 
𝑈 ∈ 𝐶𝑙𝑛

Obtain 
measure

ment 
outcome
ۧ|𝕓 ∈ ℤ2

𝑛.

𝜌
(Unkn
own)

CZ 
gate

s

Obtain 
measure

ment 
outcome
ۧ|𝕓 ∈ ℤ2

𝑛.

H 
lay
er

Single 
qubit 
Cliffor

d

<Problem>

Can we learn the arbitrary noise 
more efficiently?



(Dephasing)

Given

(Ideal)

Random 
Pauli 

operation
“Noise tailoring”[1]

[1] G. Park et al., arXiv:2503.12870 (2025)



<Algorithm>

(1) We sample  Following 

(2) Set 

(3) For each 0 ≤ 𝑙 ≤ 𝑤 − 1, calculate

(4) For each 0 ≤ 𝑙 ≤ 𝑤 − 1, calculate

(5) We repeat this procedure (1)~(4) N times and take 

Problem: How to sample 



We can sample following 𝑝 ∗ 𝑝

<Theorem: Estimating p from the convolution powers>[1]

Given the approximation order 𝑤, 𝑠 ∈ ℕ2 and 𝛿 <
1

3𝑤
,

(ex)  (w,s)=(2,0)

(Samplable) [1] G. Park et al., arXiv:2503.12870 (2025)



(Samplable)

Bias (y_axis) of fidelity estimation between pure 2-qubit 
GHZ states.

Single qubit depol-noise with 0.05 rate for the sampled
two-qubit gates 

Target value: 1



<Challenges for the unknown noise case>

1. 𝛿  should be lower than 
1

3𝑤2 for the valid approximation.  Can we increase the upper bound of 

threshold?

2. Can we improve the upper bound of bias?  

3. Unbiased estimator for sparse noise?

4. How to manage the noisy transversal CNOTs?   

NOISY



Summary

1. We demonstrated a robust shadow tomography scheme under the gate dependent noise. 

2. The noise channel in random Clifford measurement shrinks to read out error convolution with 
the ideal measurement distribution. 

3. For Pauli noise case, the above fact offers a tighter estimation variance (sampling complexity) 
of noise mitigation via WH transform, compared to the conventional PEC shadow.

4. When the  noise is arbitrary and unknown, we can transform the Clifford measurement to 
graph state measurement, to tailor the noise into dephased form. 

Then the tailored dephasing noise 𝑝 can be learned by the approximation with the convolution   
power series of (𝑝 ∗ 𝑝) hence applying to mitigate the shadow.



Thank you very much
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