

次世代 $\mu^+ \rightarrow e^+ \gamma$ 崩壊探索のための光子ペアスペクトロメータの開発 ービームテストによるアクティブコンバーターの性能評価ー

Developing an experiment for a future search for $\mu^+ \rightarrow e^+ \gamma$

- performance evaluation of the active converter through beam test -

榊原 澪

潘晟^A, Lukas Gerritzen^A, 池田史, 岩本敏幸^A, 松下彩華, 松岡広大^c, 森俊則^A, 西口創^C, 越智敦彦^B, 大谷航^A, 内山雄祐^C, 山本健介, 大矢淳史^A, 横田凛太郎 (東大理, 東大素セ^A, 神戸大理^B, 高工研^C)

2024年9月18日 日本物理学会年次大会

$\mu^+ \rightarrow e^+ \gamma$ search

- Charged lepton flavor violation decay
 - $Br(\mu^+ \rightarrow e^+\gamma) \sim \mathcal{O}(10^{-53}) \dots SM + \nu$ oscillation
 - $Br(\mu^+ \rightarrow e^+\gamma) \sim \mathcal{O}(10^{-11} \sim 10^{-15})$...predicted in BSM (e.g. SUSY)
- Experiments
 - MEG experiment (2009-2013@PSI): Br($\mu^+ \rightarrow e^+\gamma$) < 4.2×10⁻¹³(90% C.L.)
 - MEG II experiment (2021-)
 - Future $\mu^+ \rightarrow e^+ \gamma$ experiment

- : ongoing with the target sensitivity 6×10^{-14}
- : planning with the target sensitivity of $\mathcal{O}(10^{-15})$

Future experiment of $\mu^+ \rightarrow e^+ \gamma$ search

- Motivation of search at $O(10^{-15})$ sensitivity
 - Further search for $\mu^+ \rightarrow e^+ \gamma$ (if it was not found in MEG II experiment)
 - Measurement of $\mu^+ \rightarrow e^+ \gamma$ after discovery (branching ratio, angular distribution,...) for BSM model selection

Muon beam

the intensity of muon beam at PSI is planned to be increased to ~ $10^{10} \mu^+/s$ (High Intensity Muon Beam (HiMB), implemented in 2027-2028)

Detector

- R&D of new detectors with good resolutions & high rate capability is necessary
- main background of $\mu^+ \rightarrow e^+ \gamma$: accidental background R_{μ}

 $N_{acc} \propto R_{\mu}^2 \cdot \Delta E_{\gamma}^2 \cdot \Delta p_e \cdot \Delta \theta_{e\gamma}^2 \cdot \Delta t_{e\gamma} \cdot T$

 R_{μ} : muon stopping rate $\Delta E_{\gamma}, \Delta p_e, \Delta \theta_{e\gamma}, \Delta t_{e\gamma}$: detector resolutions T: measurement time

- $\rightarrow \gamma$ energy measurement resolution is important for background suppression
- for γ measurement, pair spectrometer with active converter is under development

Pair spectrometer with active converter

problem with conventional pair-spectrometer

- \checkmark low efficiency (compared to calorimeter) \rightarrow want to increase thickness
- energy loss in converter \rightarrow want to reduce thickness

solution : energy measurement by converter (active converter)

requirements for active converter

 $\frac{\Delta E}{E} < 0.4$ % at signal region (E = 52.8 MeV) & $\Delta t < 30$ ps for pair spectrometer

 $N_{\rm p.e.} > 670$ p.e. (3mm thickness converter) & $\Delta t < 40$ ps for 1 MIP

candidate material for active converter ... LYSO

Beamtest of active converter

Electron beam at KEK PF-AR Test beam line

- Beam momentum ~ 3 GeV
- Beam rate $\sim 4.5 \text{ kHz}$

Active converter prototype

LYSO + SiPM readout (three on both edge)

Readout method

- ① independent readout
 - Three readout channels /side
 - Timing is calculated from weighted average of channels

② series readout

- Three SiPMs connected in series
- One readout channel /side
- reduced capacitance \rightarrow faster response

- preliminary analysis reported by R.Yokota (JPS 2024 spring,19aT1-9)
- more detailed analysis in this study

studied item on the beamtest

lightyield analysis

- 1 p.e. gain was calculated from dark count of MPPC
- Lightyield analysis was done with the low gain beam data
- Lightyield was far beyond the target (670 p.e.)

20 E

-20

-80

-120 -140

September 16-19, 2024

*in this analysis, gain of the electronics is assumed to have the nominal value

Waveform : 001

-150

integration range

typical waveform

pedestal

5.44 + 1.23

0.00013

0.01

 $[\times 10^{9} e]$

1 p.e.

 10^{2}

10

-0.03

Insec

2 p.e.

-0.02

-0.01

chis for vs conected rinning

time resolution analysis method

time resolution analysis result – LYSO size –

	Standard size (3 mm×5 mm×50 mm)	Half thickness (1.5 mm×5 mm×50 mm)	Double width (1.5 mm×5 mm×50 mm)	Double length (3 mm×5 mm×100 mm)	200 150
Independent readout	27.0 ps	36.1 ps	26.5 ps	30.4 ps	100
Series readout	29.4 ps	(no data taken)	27.6 ps	(no data taken)	

- Basically, LYSO size that had larger lightyield has better time resolution
- Independent readout has slightly actor : 0.82 better resolution by a few ps
 - This is due to the difference in the remaining time walk effect after correction
 - Correlation between timing of left channels and right channels \rightarrow $t_{left} - t_{TC} [ns]$
 - ...stronger on series connection

t 300

250

220.5/94

269.2 ± 4.2

0.4 – t_{ref} [ns]

 0.001574 ± 0.000651 0.04944 ± 0.00049

distribution

t_{LYSO}

time resolution analysis result – angle dependence –

time resolution analysis result – position dependence –

3x5x50 F series

time resolution analysis result – pixel pitch comparison–

- Tested MPPCs with different pixel pitch
 - 10 μm (<u>S14160-3010PS</u>)
 - 15 μm (<u>S14160-3015PS</u>)
 - 50 μm (<u>S14160-3050HS</u>)

- 50 μm pixel pitch shows the best performance because of
 - high gain
 - high PDE

3x10x50F independent (using Up TC)

3x10x50F independent (using down TC)

summary and prospect

summary

- Pair spectrometer with active converter is under R&D as a gamma detector for the future experiment for $\mu^+ \rightarrow e^+ \gamma$ decay search.
- The beamtest result shows that requirement of energy and time resolution for a converter can be well achieved with LYSO.
- Active converter with 3 mm \times 10 mm \times 50 mm LYSO and 50 μm pixel pitch MPPC had the best performance in terms of energy & time resolution.

prospect

- Remaining time walk effect was seen even after the correction by TOT
 - \rightarrow improve correction by the charge information
- L. In the future experiment, timing and energy must be measured at the same time

Beam test with high gain & low gain DAQ at the same time in Nov.-Dec. 2024

KEK PF-AR test beam line

requirements for the active converter

energy resolution

• $\frac{\Delta E}{E} \le 0.4 \%$ @E = 52.8 MeV for pair spectrometer

$$\rightarrow \Delta E \leq 211 \text{ keV} \text{ for } 2 \text{ MIP}(e^+ \& e^-)$$

• deposit energy of 2 MIP: $E' = 1.12 \text{ MeV/mm} \times 3 \text{ mm} \times 2 = 6.72 \text{ MeV} \text{ (in 3 mm thickness LYSO)}$ $\rightarrow \frac{\Delta E}{E'} = \frac{1}{\sqrt{N_{\text{p.e.}}}} \leq \frac{211 \text{ keV}}{7.72 \text{ MeV}} = 2.73 \%$ $\rightarrow N_{\text{p.e.}} \geq 1341 \text{ for 2 MIP}$ $\rightarrow N_{\text{p.e.}} \geq 671 \text{ for 1 MIP}$

time resolution

• $\Delta t = 30 \text{ ps}$ for pair spectrometer $\rightarrow 30 \times \sqrt{2} = 42 \text{ ps}$ for 1 MIP

deposit energy by electron in different energy

- deposit energy in LYSO was simulated with various electron beam energies
- deposit energy in LYSO of 3 GeV electron was almost identical to that of 25 GeV electron

the resolution obtained in the beam test could be applied to the future experiment

lightyield analysis method

- estimate 1 p.e. gain with the dark count of MPPC
- obtain charge from the low gain beam 2. where full waveform is recorded
- estimate the detected number of photoelectrons at LYSO by 3.

pedestal

311.5 ± 2.

0.01

 $[\times 10^{9} e]$

0.001975 + 0.0000 65.44 ± 1

1 p.e.

 10^{2}

10

2 p.e.

0pe a

lightyield analysis result

- thickness : lightlield decreases in proportion to the thickness
- : wider LYSO have smaller ratio of photo-insensitive area • width
- : longer LYSO is more susceptible to the attenuation of scintillation light • length LYSO of all size achieved the goal of $N_{p.e.} > 670$ $(N_{p.e.} > 168 \text{ for half thickness})$

- 1. look at the correlation between $t_{LE} t_{ref}$ and TOT, and get the interpolation function
- 2. subtract interpolation function from the datapoint
- 3. obtain resolution from a σ of a gaussian fit of corrected time $_{\rm September \, 16-19, \, 2024}$

optimization of the thresholds

thresholds to be optimized:

800

– mV]

- 1. leading edge threshold for each LYSO channel
- 2. TOT threshold for each LYSO channel
- 3. leading edge threshold for time reference counter

timing decision by multiple MPPC channels

estimation of contribution from reference counter

remaining time walk effect

series connection had stronger time walk effect left even after the correction by TOT

September 16-19, 2024

 $K t_{left} - t_{TC}$ and $t_{right} - t_{TC}$ will have a small correlation even if there is no walk effect, because of t_{TC}

time resolution analysis result – angular dependence –

LYSO achieved the goal resolution of 42 ps with all injection angle

tion

55

downstream LYSO

September 16-19, 2024

comparison between material & thickness

efficiency in 3 mm thickness LYSO

pictures

ピクセルサイズ	小 ◀────► 大
増倍率	
検出効率	
ダイナミックレンジ	
高速応答 <mark>性</mark>	

JTC's Scintillation Product Information

Properties	Ce:FTRL	Ce:LYSO	YSO
Coincident Time Resolution(ps) 2mm cube	96	125	
LO (Ph/MeV)	30000±10%	36000±10%	27000
Decay Time (ns)	31	40	70
Energy Resolution	8-10%	8-10%	11%
Hygroscopic	No	Νο	No
Wavelength of Max Emission (nm)	420	420	420
Refractive Index	1.81	1.81	1.8
Density (g/cm3)	7.2	7.2	4.5

3 x 5 x 50 F&N (independent) position scan

resolution [ps]

55F

50F

40

35⊢

30E

25

20^L-30

55F

50F

45

40

35

30

25

20

-20

-10

resolution [ps]

-20

-10

0

3x5x50FN independent

3x5x50FN independent

3x5x50FN independent (using Up TC)

3x5x50FN independent (using down TC)

3 x 5 x 50 F (series) position scan

3x5x50F series upLYSO upTC 60 r resolution [ps] analysis using TC 55F left vs right (corrected) 50F 40 35 **30**F 25 20 -20 30 -10 10 20 -30 injection position [mm]

3x5x50F series downLYSO upTC

3x5x50F series 60 resolution [ps] upstream TC 55F 50F 45 40 35F **30**F 25F 20 -20 -10 10 20 30 0 injection position [mm]

0

10

injection position [mm]

20

30

20^L -30

-20

-10

September 10-19, 2024

injection position [mm]

1.5 x 5 x 50 (independent) position scan

1.5x5x50F independent ver2

September 16-19, 2024

3 x 5 x 100 (independent) position scan

September 16-19, 2024

40

3 x 10 x 50 (independent) position scan

resolution [ps]

3x10x50F independent upLYSO upTC

September 16-19, 2024

3 x 10 x 50 (series) position scan

3x10x50F series downLYSO upTC

1.5 x 5 x 50 angle scan

1.5x5x50F independent_ver2 downLYSO downTC

injection angle [deg]

20<u></u>

1.5x5x50F independent_ver2

injection angle [mm]

í ()

3 x 10 x 50 angle scan

September 16-19, 2024

80

80