LHC Status and Prospect

2. Dec. 2009 ILC Detector Workshop T. Kobayashi (Univ. of Tokyo /ICEPP)

Large Hadron Collider (LHC) at CERN

- 14 TeV pp collider
- using LEP tunnel
- 14 years of construction period
- total cost ~5BCHF
- successfully started the beam circulation on 10.Sep.2008, but ···

2-in-1 sc dipole magnet : 8.3T, 1.9K, 14.3m, 1232pcs

26th November 2009 Steve Myers

LHC is back!

From the dark days after September 19, 2008 to the bright days of late November 2009

Friday November 20

18:30 Beam 1

- 19.00 beam through CMS (23, 34, 45)
 - beam1 through to IP6 19.55 Starting again injection of Beam1
 - corrected beam to IP6, 7, 8, 1
- 20.40 Beam 1 makes 2 turns
 - Working on tune measurement, orbit, dump and RF
 - Beam makes several hundred turns (not captured)
 - Integers 64 59, fractional around .3 (Qv trimmed up .1)
- 20.50 Beam 1 on beam dump at point 6
- 21.50 Beam 1 captured

22:15 Beam2

- 23.10 Start threading Beam2
 - Round to 7 6 5 2 1
- 23.40 First Turn Beam2 ^{1h25} for 27km: a bit faster
 - Working on tune measurement, orbit, dump and RF
 - Beam makes several hundred turns (not captured)
 - Integers 64 59, fractional around .3 (Qv trimmed up .05)
- 24.10 Beam 2 captured

2h10 for 27km: 12.5km/h average speed

First collision events seen on Nov.23 (at 450GeV+450GeV)

A di-jet candidate

CONTRACT OF A DESCRIPTION

Run 140541 Event 416712

Two jets back-to-back in ϕ , both with (uncalibrated) $E_T \sim 10$ GeV, η of -1.3 and -2.5, \sim no missing E_T

Triggered by MBTS A/B in time, several hits Also triggered by L1Calo EM3

First Di-photon Distribution in CMS

- $M(\pi^0)$ is lower in both data and MC
- Mostly due to the readout threshold (100 MeV/Crystal).
- Conversions: part of the energy is deposited upstream of ECAL.
- Event timing is consistent

LHC Schedule 2009

Press Release (30.11.2009) "LHC sets new world record"

23.Oct.2009

17.Nov.2009

How much luminosity did we collect? Naïve estimate

- With a tight calorimeter-based timing selection, cross-checked by the MBTS and TRT ToF measurements, we have identified 197 golden collision candidates from run 140541 of Nov 23
- We separate this sample into 2 parts (afternoon=A, evening=B) of different beam conditions
- From Monte Carlo (solenoid field on) we find that the selection efficiency, including trigger, for inelastic and diffractive minimum bias events is about 70%
- Using as total minimum bias cross section of 58 mb (40 mb inelastic, 12/6 mb SD/DD):

Sample	Number of events	DAQ duration	Average rate	Average inst. Iuminosity	Integrated Iuminosity
А	61	54 mins	0.03 Hz	$0.5 \times 10^{24} \text{ cm}^{-2} \text{ s}^{-1}$	1.5 mb ⁻¹
В	136	46 mins	0.07 Hz	$1.2 \times 10^{24} \text{ cm}^{-2} \text{ s}^{-1}$	3.4 mb ⁻¹

Cross checks:

• Assuming that ϵ =0% for SD and DD \rightarrow increases luminosity by 10%

• change inelastic cross section to 34 mb \rightarrow increases luminosity by 15%

LHC 2010 - very draft

Start non-LHC physics program

Recommisssoning with beam

• 2009:

• 1 month commissioning

• 2010:

- 1 month pilot & commissioning
- 3 month 3.5 TeV
- 1 month step-up
- 5 month 4 5 TeV
- 1 month ions

Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrate	% nominal
1	Beam commissioning						
2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹	
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹	
4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4
5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8
6	Shift to higher energy: approx 4 weeks	Would aim for physics without crossing angle in the first instan with a gentle ramp back up in intensity		tance			
7	4 – 5 TeV (5 TeV luminosity numbers quoted)	156	7 x 10 ¹⁰	2	4.9 x 10 ³¹	~26 pb ⁻¹	3.4
8	50 ns – nominal Xing angle	144	7 x 10 ¹⁰	2	4.4 x 10 ³¹	~23 pb ⁻¹	3.1
9	50 ns	288	7 x 10 ¹⁰	2	8.8 x 10 ³¹	~46 pb ⁻¹	6.2
10	50 ns	432	7 x 10 ¹⁰	2	1.3 x 10 ³²	~69 pb ⁻¹	9.4
11	50 ns	432	9 x 10 ¹⁰	2	2.1 x 10 ³²	~110 pb ⁻¹	12

General purpose detectors for pp collisions

+ LHCb, ALICE, TOTEM, LHCf

Length : ~45 m Diameter : ~24 m Weight : ~ 7,000 tons Electronic channels : ~ 10⁸ Solenoid : 2 T Air-core toroids Length : ~22 m Diameter : ~14 m Weight : ~ 12,500 tons Solenoid : 4 T Fe yoke Compact and modular

	ATLAS	CMS	
TRACKER	Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 4 \times 10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$	
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation	
HAD CALO	Fe-scint. + Cu-liquid argon (\geq 10 λ) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Brass-scint. (≥ 5.8 λ + catcher) σ/Ε ~ 100%/√Ε ⊕ 0.05	
MUON	MDT, CSC, RPC, TGC $\sigma/p_T \sim 7$ % at 1 TeV standalone	DT, CSC, RPC $\sigma/p_T \sim 5\%$ at 1 TeV combining with tracker	

Activities of ATLAS-Japan Group

 15 Institutes (KEK, Tsukuba, UT/ICEPP, TMU, Shinshu, Nagoya, Ritsumeikan, Kyoto, KUE, Osaka, Kobe, Okayama, Hiroshima, HIT, NIAS)
~100 Participants (staff + students)
Funded through KEK (detector budget) and ICEPP (data analysis budget)

and TDAQ, Geant4

Contributions from Japan

Detector hardware status summary in one page

Sub-detector	Number of channels	Operational fraction (%)
Pixels	80 M	98.0
SCT Silicon Strips	6.3 M	99.3
TRT Transition Radiation Tracker	350 k	98.2
LAr EM Calorimeter	170 k	98.8
Tile Calorimeter	9.8 k	99.5
Hadronic Endcap LAr Calorimeter	5.6 k	99.9
Forward LAr Calorimeter	3.5 k	100
MDT Muon Drift Tubes	350 k	99.7
CSC Cathode Strip Chambers	31 k	98.4
RPC Barrel Muon Trigger Chambers	370 k	97.0
TGC Endcap Muon Trigger Chambers	320 k	99.8

Trigger and DAQ: routinely taking long runs of cosmic data with all detector integrated at >300 MB/s

W.Smith (U.Wisconsin) HCP, Nov.6, 2009

CRAFT09 Performance

Cosmics Run at 4T* (operating at 3.8T)

% Operational

What was expected in Summer 2008

2012年: O(10) fb⁻¹ (?)

LoI for Phase-II: ~April next year **TP: 2012** TDR: end 2013 (ID TDR), ---

Current Experimental Limit on SM Higgs Mass

Moriond Conf. (Mar.2009)

 \Rightarrow 114.4 < M_H < 160 (GeV)

SM Higgs boson discovery would be made in early years of LHC run (until 2012~2013)

23

After Higgs(-like) Particle is found ---

Higgs couplings to fermions and bosons

Ratio of the couplings can be measured at ~10% accuracies

SUSY(mSUGRA) 50 Discovery Reach

Extra-Dimension(ADD Models) 5σ Discovery Reach

Table 6: 5 σ discovery limits that can be achieved on M_D , in TeV, as a function of the number of extra dimensions (δ) for various values of energy and integrated luminosity.

Summary of LHC New Physics Reach

SM Higgs **MSSM** Higgs SUSY (squark, gluino) New gauge bosons (Z') Quark substructure (Λ_{C}) q*, 1* Large ED (M_D for n=2,4) Small ED $(M_{\rm C})$ **Black** holes M(top quark) M_{W} CP-violation in B-decay Rare B-decay ($B_s \rightarrow \mu\mu$)

 $100 \text{ GeV} \sim 1 \text{ TeV}$ covers full (m_A , tan β) 2.5 - 3 TeV (300 fb⁻¹) $< 4.5 \text{ TeV} (100 \text{ fb}^{-1})$ $< 25/40 \text{ TeV} (30/300 \text{ fb}^{-1})$ < 6.5/3.4 TeV (100 fb⁻¹) $< 9/5.8 \text{ TeV} (100 \text{ fb}^{-1})$ < 5.8 TeV (100 fb⁻¹) < 6 ~ 10 TeV $\sigma_{\rm M} \sim 1 \text{ GeV} (\sim 0.5 \%)$ σ_м ~ 15 MeV $\sigma(\sin 2\beta) \sim 0.016 \ (30 \ \text{fb}^{-1})$ ~ 5σ (130 fb⁻¹)

Discovery/Luminosity Roadmap?

Run 443 Eut 22734 Treal (EB): 23:10 I GeU (EB) 23:10 I 5 GeU (FD) Run 443 Eut 22734 Treal (EB): 31.9 GeV Charge(EB): 13Hous The: 0 I filer Type: 1 Dieger She TOTAL TOTAL BTOTAL BTOTAL

0

13/08/1989 23:16:46

OR

Now

Hoping that the next excitement would come well before 2029

0