

My first talk at JPS on LHC project (14 years ago)

Evian SUMMARY OF EXPRESSIONS OF INTEREST • PP : a) Main Detectors - ASCOT P. Norton

CMS

M. Della Negra J.C. Lottin - EAGLE P. Jenni - L3+1 S.C.C. Ting b) B Physics - CP Violation in B P. Schlein (forward spectrometer in collider mode) - CP Violation in B (extracted beam FT) G. Carboni T. Nakada - CP violation in B (GAS JET FT) LHCb J. Schukraft ALICE - Dedicated general purpose detector • Heavy lons : - DELPHI G. Jarlskog - CMS L. Ramello Neutrinos : K. Winter a la NOMAD < L. Vannucci

+ TOTEM, LHCf, MOEDAL, FP420, --

Mar.1992

LHC Physics Prospects Then and Now

LHC Machine Parameters

Proton-Proton Collider

Apr. 2005 First magnets were installed in the LHC tunnel.

Oct. 2005

July 2006 Half-way point(616th) for the 1232 dipole magnets

> "The longest journey: the LHC dipoles arrive on time" (CERN Courier, Oct. 2006)

Cryodipole overview

Updated 30 Sep 2006

Data provided by D. Tommasini AT-MAS, L. Bottura AT-MTM

Successful international collaboration (Japan - US - CERN)

The CERN Control Centre (CCC) that combines all the control rooms for the accelerators, the cryogenic system and the technical infrastructure came into operation on 1st February, 2006.

(Revised) LHC schedule as presented to CERN Council on 23 June 2006

Last magnet installed Machine and experiments closed : March 2007 : 31 August 2007

■ First collisions (√s = 900 GeV, L~10²⁹ cm⁻² s⁻¹) : November 2007 Commissioning run at injection energy until end 2007, then shutdown (3 months ?)

First collisions at $\sqrt{s}=14$ TeV (followed by first physics run): Spring 2008

Goal : deliver integrated luminosity of few fb⁻¹ by end 2008

Sectors 7-8 and 8-1 will be fully commissioned up to 7 TeV in 2006-2007.
 If we continue to commission the other sectors up to 7 TeV,
 we will not get circulating beam in 2007.

L. Evans, CERN Council, 23/6/2006

from end June 2008 (S. Myers)

- The other sectors will be commissioned up to the field needed for de-Gaussing.
- Initial operation will be at 900 GeV (CM) with a static machine (no ramp, no squeeze) to debug machine and detectors.
- Full commissioning up to 7 TeV will be done in the winter 2008 shutdown

Staged commissioning plan for protons

Note: dates and integrated luminosities are MY interpretation (F. Gianotti)

General purpose detectors for pp collisions

Length : ~45 m Diameter : ~24 m Weight : ~ 7,000 tons Electronic channels : ~ 10⁸ Solenoid : 2 T Air-core toroids Length : ~22 m Diameter : ~14 m Weight : ~ 12,500 tons Solenoid : 4 T Fe yoke Compact and modular

Detector elements

	ATLAS	CMS
TRACKER	Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (\geq 10 λ) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Brass-scint. (≥ 5.8 λ + catcher) σ/Ε ~ 100%/√Ε ⊕ 0.05
MUON	MDT, CSC, RPC, TGC σ/p _T ~ 7 % at 1 TeV standalone	DT, CSC, RPC $\sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

- The last(8-th) Barrel Toroid coil installed in Aug. 2005

Ø

- Barrel calorimeter (LAr EM + HAD Fe/Scint. Tilecal) in final position at Z=0 (Nov. 2005)
- Barrel toroid: cool down completed, first tests towards full field started in Sep. 2006

End-cap calorimeter (LAr EM + HAD + Forward inside same cryostat, surrounded by HAD Fe/Scint. Tilecal) being moved inside the barrel toroid

End-cap toroids → critical path some delay due to technical problem (cold mass support alignment mechanics)

Feb. 2006

In February, barrel Si detector (SCT) was inserted into barrel TRT. \rightarrow Installation in the pit in Aug. 2006

Both end-caps as well as barrel pixel detectors will be ready for installation in the pit in April 2007.

Three completed Pixel disks (one end-cap) Installation of the two end-caps will be in Jan./Feb. 2007.

Central Solenoid: fully commissioned (2T) in-situ in Aug. 2006, and field mapping meas. done

Sep. 2006 TGC (Thin Gap Chamber) for Forward Muon Trigger: First Big Wheel in the pit

"12 years ago, we only dreamed about it...." (G. Mikenberg)

→ 5 more TGC BWs and 2 MDT BWs to come!

Installation of Barrel Muon chambers (MDT, RPC) will be completed until the end of 2006.

ATLAS Installation Activities in the Cavern

15-09-2006

Underground UXC Cavern

CMS

M. Della Negra LHCC (10 May 2006)

Test of the fire extinguishing system (12 May 2006)

- Compact and modular
- Assembled at the surface and lowered in the cavern piece by piece by "gantry" crane

 \rightarrow "15-piece jigsaw puzzle" (A. Ball)

YBO lowering (2000t): Dec. 2006

<u>Inner tracker:</u> ~ 220 m² of Si sensors 10.6 million Si strips 65.9 million Pixels

- Assembly of all 16000 modules completed
- Integration progressing well
- Installation at Point 5 in June 2007

(Pixel detector will not be in the initial detector, but it will be installed to be ready for the physics run in 2008.)

Electromagnetic calorimeter

Barrel : 36 SuperModules (SM), 1700 crystals each Total of ~ 61000 barrel crystals (>90% delivered) 30 bare SM assembled, 22 equipped with electronics

2 barrel SM installed inside HCAL for MTCC

Crystal delivery determines ECAL schedule: last barrel (end-cap) crystal delivered in Feb. 2007 (Feb. 2008). Plan is to have barrel completed for commissioning run in 2007 and end-caps installed for 2008 physics run.

Critical item

Magnet Test and Cosmic Challenge (MTCC)

Cosmics run of a ~full detector slice (few percent of CMS coverage) inside 4T field.

Test: detector installation and closing; magnet commissioning and field map; combined operation of full chain detector-electronics-DAQ-trigger-DCS-software identical to final experiment; timing, calibration, alignment procedures

→ very successful
→ start the "jigsaw puzzle"

A cosmic track recorded at full field(4T) in a "slice" of CMS detector (Aug. 2006)

VELO and Ecal (Shashlik)

LHCb ГНСр

- Good mass and eigentime resolution: VELO + tracking system
- Hadron identification: RICH system
- LO Lepton and Hadron p_{T} trigger: Calorimeter and muon system
- LHCb will give unprecedented statistics for B decays, including access to the B_s, B_c and b-baryons.
- Many measurements of rare decays, CP asymmetries, B_s - B_s (bar) oscillations, ... will be performed.
- Low luminosity (~10³²) required for the LHCb experiment will allow to exploit full physics potential from the beginning of LHC operation.
- LHCb will be ready for the LHC pilot run in 2007.
- Detector and reconstruction are expected to be calibrated and tuned for the Physics Run in 2008.

Dipole magnet (4 Tm)

Start to commission triggers and detectors with collision data (minimum bias, jets, ..) in real LHC environment

■ Maybe first physics measurements (minimum-bias, underlying event, QCD jets, ...)? ■ Observe a few W→ Iv, Y → $\mu\mu$, J/ ψ → $\mu\mu$?

May 1999

May 1999

CSC (Computing System Commissioning) notes are to be produced in spring 2007, covering software and physics analysis validation for the early physics run with 0.1 fb⁻¹ and 1 fb⁻¹.

Detector Performance and Software Physics Technical Design Report, Volume I

Feb. 2006

Physics Performances Physics Technical Design Report Vol II

Instead of 3-rd vol. of TDR, short notes on startup will be submitted to LHCC in summer 2007, along with the very early physics reach with 0.1 fb⁻¹ and 1 fb⁻¹.

Jun. 2006 http://cmsdoc.cern.ch/cms/cpt/tdr/

SM Higgs Boson Search

ATLAS Physics TDR (May 1999)

600

500

400

300

200

100

100

110

120

130

 $H \rightarrow \gamma \gamma$

 $1 \, {\rm fb}^{-1}$

140

Events/GeV¹

Now, Higgs boson mass is lower: m_H between 114 GeV and 200 GeV

CMS Physics TDR (June 2006)

Vector Boson Fusion Process

D.L.Rainwater, D.Zeppenfeld, K.Hagiwara (1999)

Feature of VBF Process:

Cross-section is lower than the gluon fusion process
 High P_T jet in the forward region
 Higgs decay products observed in the central rapidity gap (no color flow)
 → Large reduction of background

40 60 80 100 120 140 160 180 m_{τ} (lepton pair, E_{τ}^{miss}) (GeV)

20

SM Higgs boson discovery would be made in early years of LHC run (2009/2010?)

33

ss Section (fb/GeV)

8200

150

100

Discovery Potential of SUSY (mSUGRA)

Search for SUSY : Understanding of BG is important

Possible Signals in Gauge Mediated SUSY Breaking Models

M (GeV)

ATLAS Physics TDR (May 1999)

Extra Dimensions

Large Extra Dimensions (ADD)

- Gravity in bulk / flat space
- Missing energy / interference / black holes

Warped Extra Dimensions (RS)

- Gravity in bulk / curved space
- Spin 2 resonances in >TeV range / black holes

TeV Scale Extra Dimensions

- Gauge bosons / Higgs in bulk
- Spin 1 resonances in >TeV range
- Interference with Drell-Yan

Universal Extra Dimensions

- Everybody in the bulk!
- Fake SUSY spectrum of KK states

$E_{T}(jet) > 1 \text{ TeV}$

CERN Press Release (2.Oct.2006)

Stephen Hawking Tours the Future of Particle Physics at CERN

Simulation of a mini black hole event with $M_{BH} \sim 8$ TeV in ATLAS

... and in CMS

WLCG Collaboration

- 4 LHC experiments (\rightarrow large amount of data)
- ~120 computing/analysis centers in ~40 countries
- Computing grid infrastructures:
 - EGEE, OSG, Nordic Grid

 $(\rightarrow$ Interoperability is crucial.)

(30 Km)

CD stack with 1 year LHC data!

(~ 20 Km)

Summary of LHC New Physics Reach

SM Higgs **MSSM** Higgs SUSY (squark, gluino) New gauge bosons (Z') Quark substructure (Λ_c) a*. l* Large ED (M_D for n=2,4) Small ED (M_C) Black holes M(top quark) M_{W} **CP-violation in B-decay** Rare B-decay ($B_s \rightarrow \mu\mu$)

 $100 \text{ GeV} \sim 1 \text{ TeV}$ covers full (m_A , tan β) 2.5 - 3 TeV (300 fb⁻¹) $< 4.5 \text{ TeV} (100 \text{ fb}^{-1})$ < 25/40 TeV (30/300 fb⁻¹) < 6.5/3.4 TeV (100 fb⁻¹) < 9/5.8 TeV (100 fb⁻¹) $< 5.8 \text{ TeV} (100 \text{ fb}^{-1})$ < 6 ~ 10 TeV $\sigma_{\rm M} \sim 1 \text{ GeV} (\sim 0.5 \%)$ σ_м ~ 15 MeV $\sigma(\sin 2\beta) \sim 0.016 \ (30 \ \text{fb}^{-1})$ ~ 5σ (130 fb⁻¹)

Discovery for sure + some measurements

can say "final word" about (low E) SUSY

Both experiments can cope with the new physics possibilities which were not foreseen at the beginning of the project.

Any one of those would change the understanding of our universe !

S. Orito (1992) ICEPP Symposium "From LEP to the Planck Scale"

> LHC Looking Down at New Phenomena in the TeV Region

It's about to take off!

T. Mori (2001) LEP Symposium @ICEPP "Beyond the EW Scale"

Many thanks to:

