PINER 実験: パイオンの稀崩壊から探る

レプトン普遍性の破れと CKMユニタリティ

東大素セ、東大理A、高工研B 森俊則, 岩本敏幸, 潘晟, 松下彩華A, 三原智B, 大谷航, 内山雄祐, 他 PIONEER コラボレーション

日本物理学会 2023年 春季大会 2023年3月24日 24pT1-2

PI NEER Experiment: A Precision Study of Rare Pion Decays to Explore Lepton Universality Violation & CKM Unitarity

ICEPP U Tokyo, U Tokyo^A, KEK^B <u>T. Mori</u>, T. Iwamoto, S. Ban, A. Matsushita^A, S. Mihara^B, W. Ootani, and Y. Uchiyama, on behalf of the PIONEER Collaboration

JPS 2023 Spring Meeting 24 March 2023 24pT1-2

Lepton Universality (LU)

- <u>Gauge Symmetry</u> dictates our Universe:
 - Gauge interactions operate universally on particles of all generations
 - Precisely tested & established with leptons "Lepton Universality"

- R(D*) Recently several experimental results seem 0.35 to indicate that Lepton Universality is actually 0.3 violated (LUV):
 - B decays (R_D, R_{D*}, etc) 0.2

 $= \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}$ $R(D^*)$

Hints of LU Violation?

new particle / new interaction?

Anomalous magnetic moments of muon and electron (g-2)_e **(g-2)**μ BNL g-2 h/m_{Bb}, LKB-11 FNAL g-2 + g-2, HarvU-08 4.2σ 2.4σ h/mcs, Berkeley -1.9 -1.4 -0.9 -0.4 0.1 0.6 Standard Mode Experiment $(\alpha^{-1}/137.035999139 - 1) \times 10^{9}$

The origin of the long-standing deviation seems to be "Lepton Universality Violating"

Discrepancy between: $K \rightarrow \mu\nu, K \rightarrow \pi\mu\nu$ and $0^+ \rightarrow 0^+$ nuclear beta decays

Another hint of LUV?

Pion beta decay: $\pi^+ \rightarrow \pi^0 e^+ \nu$ theoretically clean, free of hadronic corrections

Challenges

"5D" Active Target (ATAR) & Tracker 3D + time + energy

Fast, uniform LXe Calorimetry with excellent energy resolution <1.5%

5D event identification by ATAR (LGAD technology)

-40-40

-30

-20

-10

0

Horizontal [mm]

10

20

30

Matured LXe Technology

Inside the 2.7ton MEG II LXe detector (VUV SiPMs & PMTs are seen) The necessary performance established

SUS Honeycom

/ Y beam

Aluminur

Durce (241

blue LEDs

Developed for MEG

Prototype Detector to be used for R&D for PIONEER

Active Target (ATAR)

Past Pion Decay Experiments: **PIENU** and **PEN/PIBETA**

Both took data a long ago but have (known) challenges to overcome before final results

- Single large Nal excellent resolution but <u>slow</u>
- Small solid angle, 19X₀ large shower leakage and tail

@PSI

- Large solid angle
- Calorimeter depth of 12X₀ large tail under muon spectrum

Strategy for 10-4 precision experiment

- Statistics
 - $2 \ge 10^8 \ \pi \rightarrow e\nu$ events in 2-3 years with $3 \ge 10^5 \ \pi$ /sec beam
- Analysis
 - fit high/low energy e⁺ time distributions with various components:
 - πe
 - $\pi \mu e$
 - background, pileup, etc
- Systematic improvements
 - intense, high quality π^+ beam
 - ATAR with 5D capability to identify events
 - LXe calorimeter: 3π , $25X_0$, high res., fast

 $\sigma_{stat} = \sigma_{sys} = 0.7 \times 10^{-4}$

PIENU 2015 PIONEER Estimate

Error Source	%	%
Statistics	0.19	0.007
Tail Correction	0.12	< 0.01
t_0 Correction	0.05	< 0.01
Muon DIF	0.05	0.005
Parameter Fitting	0.05	$<\!0.01$
Selection Cuts	0.04	< 0.01
Acceptance Correction	0.03	0.003
Total Uncertainty	0.24	≤ 0.01

Sterile neutrinos and exotic decays

Expected from Phase I Data Taking

Unique sensitivity in the low mass region 1-120 MeV

Snowmass paper: The Present and Future Status of Heavy Neutral Leptons; Abdullahi et al https://arxiv.org/pdf/2203.08039.pdf

Heavy sterile neutrino and hidden sector searches improved by factor of 10

> $\pi \rightarrow eV_{H}$ $\pi \rightarrow \mu \nu_H$ $\pi \rightarrow e X$

Example papers published by 🛞 PI E NU

A. Aguilar-Arevalo et al. Physical Review D 97(7) 072012 (2018) A. Aguilar-Arevalo et al. Physics Letters B 798 (2019) 134980 A. Aguilar-Arevalo et al. Phys. Rev. D 102, 012001 (2020) A. Aguilar-Arevalo et al. Phys. Rev. D 101, 052014 (2020) A. Aguilar-Arevalo et al. Phys. Rev. D 103, 052006 (2021)

PIONEER approved at PSI addressing 3 Physics Questions

10 x Improvements in precision

- Lepton Flavor Universality
- Cabibbo Angle Anomaly

Jan. 2022 Approved with high priority @ PSI https://arxiv.org/abs/2203.01981

PSI Ring Cyclotron Proposal R-22-01.1 **PIONEER:** Studies of Rare Pion Decays

W. Altmannshofer,¹ H. Binney,² E. Blucher,³ D. Bryman,^{4,5} L. Caminada,⁶ S. Chen,⁷ V. Cirigliano,⁸ S. Corrodi,⁹ A. Crivellin,^{6,10,11} S. Cuen-Rochin,¹² A. DiCanto,¹³ L. Doria,¹⁴ A. Gaponenko,¹⁵ A. Garcia,² L. Gibbons,¹⁶ C. Glaser,¹⁷ M. Escobar Godoy,¹ D. Göldi,¹⁸ S. Gori,¹ T. Gorringe,¹⁹ D. Hertzog,² Z. Hodge,² M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,²² P. Kammel,² B. Kiburg,¹⁵ K. Labe,¹⁶ J. LaBounty,² U. Langenegger,⁶ C. Malbrunot,⁵ S.M. Mazza,¹ S. Mihara,²¹ R. Mischke,⁵ T. Mori,²² J. Mott,¹⁵ T. Numao,⁵ W. Ootani,²² J. Ott,¹ K. Pachal,⁵ C. Polly,¹⁵ D. Počanić,¹⁷ X. Qian,¹³ D. Ries,²³ R. Roehnelt,² B. Schumm,¹ P. Schwendimann,² A. Seiden,¹ A. Sher,⁵ R. Shrock,²⁴ A. Soter,¹⁸ T. Sullivan,²⁵ M. Tarka,¹ V. Tischenko,¹³ A. Tricoli,¹³ B. Velghe,⁵ V. Wong,⁵ E. Worcester,¹³ M. Worcester,²⁶ and C. Zhang¹³ ¹Santa Cruz Institute for Particle Physics (SCIPP), University of California Santa Cruz, 1156 High street, Santa Cruz (CA) 95064 USA ²Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195 USA ³Enrico Fermi Institute and Department of Physics,

Sterile neutrinos and exotic decays

2022 Mar 10 [hep-ex] iv:2203.05505v1 arX

Snowmass 2022 White Paper

Testing Lepton Flavor Universality and CKM Unitarity with Rare Pion Decays in the PIONEER experiment

W. Altmannshofer,¹ H. Binney,² E. Blucher,³ D. Bryman,^{4,5} L. Caminada,⁶ S. Chen,⁷ V. Cirigliano,⁸ S. Corrodi,⁹ A. Crivellin,^{6,10,11} S. Cuen-Rochin,¹² A. Di Canto,¹³ L. Doria,¹⁴ A. Gaponenko,¹⁵ A. Garcia,² L. Gibbons,¹⁶ C. Glaser,¹⁷ M. Escobar Godoy,¹ D. Göldi,¹⁸ S. Gori,¹ T. Gorringe,¹⁹ D. Hertzog,² Z. Hodge,² M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,²² P. Kammel,² B. Kiburg,¹⁵ K. Labe,¹⁶ J. LaBounty,² U. Langenegger,⁶ C. Malbrunot,⁵ S.M. Mazza,¹ S. Mihara,²¹ R. Mischke,⁵ T. Mori,²² J. Mott,¹⁵ T. Numao,⁵ W. Ootani,²² J. Ott,¹ K. Pachal,⁵ C. Polly,¹⁵ D. Počanić,¹⁷ X. Qian,¹³ D. Ries,²³ R. Roehnelt,² B. Schumm,¹ P. Schwendimann,² A. Seiden,¹ A. Sher,⁵ R. Shrock,²⁴ A. Soter,¹⁸ T. Sullivan,²⁵ M. Tarka,¹ V. Tischenko,¹³ A. Tricoli,¹³ B. Velghe,⁵ V. Wong,⁵ E. Wercester,¹³ M. Wercester,²⁶ and C. Zhang¹³ ¹Santo Criz Lesitite for Particle Physics (SCPP) University of California Santa Cruz, 1156 High street, Santa Cruz (CA) 95064 USA ²Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195 USA ³Enrico Fermi Institute and Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL 60637 USA ⁴Department of Physics & Astronomy, University of British Columbia 6224 Agricultural Road, Vancouver V6T 1Z1 Canada ⁵TRIUMF, 4004 Wesbrook Mall, Vancouver V6T 2A3 Canada ⁶Paul Scherrer Institute, 5232 Villigen PSI Switzerland ⁷Department of Engineering Physics, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084 P. R. China ⁸Institute for Nuclear Theory, University of Washington, Seattle WA 98195-1550 USA ⁹Argonne National Laboratory, High Energy Physics. 9700 S Cass Ave, Lemont, IL 60439 USA ¹⁰ Physik-Institut University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland ¹¹Division of Theoretical Physics, CERN. Espl. des Particules 1, 1211 Meyrin Switzerland ¹²Tecnológico de Monterrey, School of Engineering and Sciences, Blvd. Pedro Infante 3773 Pte, Culiacan 80100 Mexico ¹³Physics Department, Brookhaven National Laboratory, Upton, NY, 11973 USA ¹⁴PRISMA⁺ Cluster of Excellence and Johannes Gutenberg Universität Mainz, Institut für Kernphysik, J.-J.-Becher-Weg 45, 55128 Mainz Germany ¹⁵Fermi National Accelerator Laboratory (FNAL).

Notional Timeline

W. Altmannshofer,¹ O. Beesley,² E. Blucher,³ A. Bolotnikov,⁴ S. Braun,² D. Bryman,^{5,6} Q. Buat,² L. Caminada,⁷ S. Chen,⁸ M. Chiu,⁴ V. Cirigliano,² S. Corrodi,⁹ A. Crivellin,^{7,10} S. Cuen-Rochin,¹¹ J. Datta,¹² K. Dehmelt,¹² A. Deshpande,^{12,4} A. Di Canto,⁴ L. Doria,¹³ J. Dror,¹ M. Escobar Godoy,¹ A. Gaponenko,¹⁴ P. Garg,¹² G. Giacomini,⁴ L. Gibbons,¹⁵ C. Glaser,¹⁶ D. Göldi,¹⁷ S. Gori,¹ T. Gorringe,¹⁸ C. Hempel,⁶ D. Hertzog,² S. Hochrein,¹⁷ M. Hoferichter,¹⁹ S. Ito,²⁰ T. Iwamoto,²¹ P. Kammel,² B. Kiburg,¹⁴ K. Labe,¹⁵ J. Labounty,² U. Langenegger,⁷ C. Malbrunot,⁶ A. Matsushita,²¹ S. Mazza,¹ S. Mehrotra,¹² S. Mihara,²⁰ R. Mischke,⁶ A. Molnar,¹ T. Mori,²¹ J. Mott,¹⁴ T. Numao,⁶ W. Ootani,²¹ J. Ott,¹ K. Pachal,⁶ D. Pocanic,¹⁶ C. Polly,¹⁴ X. Qian,⁴ D. Ries,¹³ R. Roehnelt,² B. Schumm,¹ P. Schwendimann,² A. Seiden,¹ A. Sher,⁶ R. Shrock,¹² A. Soter,¹⁷ T. Sullivan,²² E. Swanson,² V. Tishchenko,⁴ A. Tricoli,⁴ T. Tsang,⁴ B. Velghe,⁶ V. Wong,⁶ E. Worcester,⁴ M. Worcester,⁴ and C. Zhang⁴

cospokespersons

¹University of California Santa Cruz $^{2}University of Washington$ $^{3}University$ of Chicago ⁴Brookhaven National Laboratory ⁵University of British Columbia $^{6}TRIUMF$ ⁷Paul Scherrer Institute ⁸Tsinghua University ⁹Argonne National Laboratory 10 University Zurich ¹¹ Tecnologico de Monterrey ¹²Stony Brook University ¹³Johannes Gutenberg University $^{14}Fermilab$ $^{15}Cornell University$ ¹⁶University of Virginia ^{17}ETH Zurich ¹⁸University of Kentucky 19 University of Bern 20 KEK²¹ The University of Tokyo ²²University of Victoria

