CDF II Detector

Akiya Miyamoto, KEK 19-July-2001 Collider Physics Workshop

Contents:

- 1. Tevatron Collider
- 2. CDFII detector
 - Overview
 - Tracking detector
 - Calorimeter
 - Muon detector
 - Particle I D detector
 - Other detector
- 3. Summary

References

- 1. "CDF実験の現状と質量起源の研究の展望", 金信弘, talk at 第 1回 コライダー物理の研究会, 10-Feb-2001
- 2. "The Run 2 Physics Program of the Fermilab Tevatron Collider", Al. Goshaw, talk presented at KEK Physics seminar, 6 July 2001
- 3. <u>http://www-cdf.fnal.gov/</u>
 - <u>http://www-cdf.fnal.gov/upgrades/upgrades.html(Detector)</u>
 - <u>http://cosmo.fnal.gov/organizationalchart/derwent/cdf_accelrrator.html</u> (Accelerator)
- 4. "The CDF II Detector Technical Design Report", Fermilab-pub-96/390-E
- 5. "The Collider detector at Fermilab", NIM A267(1988) 272-279

Fermilab

A. Goshaw Tevatron Run 2

What's New at Fermilab?

A. Goshaw Tevatron Run 2

춖

The Fermilab Accelerator Complex

- Main Injector (150 GeV proton storage ring) replaces Main Ring (the original Fermilab high energy accelerator)
- Completely revamped stochastic cooling system for pbars
- A new permanent magnet Recycler storage ring for pbars
- Higher energy collisions: 900 GeV -> 980 GeV)
- Increased number of p and pbar bunches: 6 -> 36 -> ~100

Cockroft-Walton Preaccelerator 750KeV

400MeV Linac

150GeV protons for Tevatron

- Linac/Booster
 5~7 buunches of a pulse train to Main I njector
- Main I njector
 Coalesce bunches into single bunch
 Accelerate to 150 GeV

Tevatron
 Filled with 36 bunches

pbar to Tevatron

- Anti-protons from pbar ring are coalesced at Main Injector, accelerated to 150 GeV, then transferred to Tevatron
- After a store, remaining anti-protons are decelerated to 150 GeV, transferred to Main Injector and decelerated to 8 GeV, then stored in the recycler for next store

Tevatron parameters

Run	Ib(1993-95)	Run IIa	Run IIa	Run IIb	unit
# of bunches	(6x6)	(36x36)	(140x103)	(140x103)	
Protons/bunch	2.3x10 ¹¹	2.7x10 ¹¹	2.7x10 ¹¹	2.7×10^{11}	
Anti-proton/bunch	5.5×10^{10}	3.0×10^{10}	4.0×10^{10}	1.0×10^{11}	
Total Antiprotons	3.3x10 ¹¹	1.1×10^{12}	4.2×10^{12}	1.1x10 ¹³	
Pbar production rate	6.0x10 ¹⁰	1.0×10^{11}	2.1x10 ¹¹	5.2x10 ¹¹	hr -1
Proton emittance	23π	20π	20π	20π	mm- mrad
Antiproton emittance	13π	15π	15π	15π	mm-mrad
β*	35	35	35	35	cm
Energy	900	1000	1000	1000	GeV
Anti-proton bunches	6	36	103	103	
Bunch length(rms)	60	37	37	37	cm
Crossing Angle	0	0	136	136	µrad
Typical Luminosity	0.16x10 ³¹	0.86x10 ³²	2.1x10 ³²	5.2x10 ³²	cm ⁻² sec ⁻¹
Integrated Luminosity	3.2	17.3	42	105	pb ⁻¹ /week
Bunch spacing	~3500	396	132	132	nsec
Interactions/crossing	2.5	2.3	1.9	4.8	

Tevatron status (as of 16-July-2001)

•Peak Luminosity

- Peak L ~ 2×10^{30} was achieved in on June 28
- •Peak L expected by Sep. 15 ~1x10³¹
- •Between June 28 and Sept. 15
 - ●~ 5x10³⁰
 - •300nb⁻¹/store, 1500nb⁻¹/week
 - •Integrated luminosity ~13.5pb⁻¹
- •Peak L expected by Mid. Jan. 2002 ~4-5x10³¹
- •Between Mid. Jan 2002 and June 30
 - ●4.5-10pb⁻¹/week
 - ●Integration Luminosity ~190pb⁻¹

Shutdown schedule

- •July 8th- July 16th : due to helium leak casued by several quenches
- •Scheduled shutdown: Oct 8 for about 5 weeks

CDF Detector Roll-In

CDF Collaboration

Short History of CDF

●Aug. 1981	CDF design report	
●Oct. 1985	First pp collision	
•Dec. 1986	CDF was completed	
●Jan. 1987 ~ May 1987	Test run	0.025pb ⁻¹
•Jun. 1988 ~ May 1989	First Physics run	4pb ⁻¹

Detector upgrade

●Apr. 1992 ~ May 1993	Run I A	20pb ⁻¹
•Dec. 1993 ~ Feb. 1996	Run I B	90pb ⁻¹

Detector/Tevatron Upgrae (1.96 TeV)

• Oct. 2000~ Aug. 2001	Run II Commisionning	
●Autum 2001 ~	Run IIa	~2000pb ⁻¹
●2004 ~	Run IIb	~15000pb ⁻¹

The CDF Detector

RETAINED FROM CDF RUN I

- Solenoidal magnet (1.4T)
- Central and wall calorimeters
- Central and extension muon detectors

NEW FOR CDF RUN II

Faster detector(132ns) Better performance

- Tracking system
 - Silicon vertex detector (SVXII)
 - Intermediate silicon layers (ISL)
 - Central outer tracker (COT)
- Scintillating tile end plug calorimeter
- Intermediate muon detectors
- Scintillator time of flight system
- Front-end electronics (132 ns)
- Trigger system (pipelined)
- DAQ system (L1, L2, L3)

Tracking detectors : COT, ISL, SVXII

COT, I SL, SVX($|\eta| < 1.0$): $dp_T / p_T^2 \sim 0.1\%$ I SL, SVX($1.0 < |\eta| < 2.0$): $dp_T / p_T^2 \sim 0.4\%$

Silicon Tracking

- The silicon strip detector is a stand-alone 3d tracking system
- Solution $\sigma_d = \sqrt{a^2 + (b/P_t)^2}$ (a = 7µm, b = 20-30µm)
- Increase in B tagging for tt: Run I Run II

Silicon Vertex Detector(SVX II)

- Coverage: |h|<2.0</p>
- Double sided detector: r-z readon out
- Radiation hard to survive 3fb⁻¹ (0.5Mrad/fb⁻¹ for layer0 sensor)
- •42 cell analog pipeline to store data while Level1 trigger decision.
- Readout for Level2: 6~7µsec:

Silicon Vertex Tracker (SVT) for Level2 trigger dicision

Number of barrel Number of layers/barrel Number of wedges/barrel Ladder length Combined ladder length Radius of innermost layer Radius of outermost layer r-\$\$ readout pitch r-z readout pitch (Stereo layer, 3 rd & 5 th , is 6	3 5 12 29cm 87cm 2.44cm 10.6cm 60~65µm 125~141µm 50mm pitch)	Wirebonds Cable Jumper	Support Silicon Sensors lybrid 3 Chips
	Johnin prech	Wirebond	S
Resolution(radial) Material thickness(total)	12μm 3.5%Χ ₀	Perspective view	ν of the φ-side

Figure 5.2: The SVX II bulkhead design

Silicon Integration and Installation

Intermediate Silicon Layer (ISL)

• Compare with SVXII, ISL is

✓ Larger radius, Larger surface area

Lower ocupancy and less radiation damage

Simplify SVXII technology to reduce cost

I SL parameters

Radius	20 to 30cm
ηcoverage	< 2.0
Matterial/ladder	~0.5%
Total Matterial	~2%

Sensor properties

Readout strip axial/stereo	
Stereo angle I.2°	
Strip pitch(axial) 55µm(axial), 72µm(stre	eo)
Readout pitch twice the strip pitch	
Spacial resolution(σ) < 16 μ m (axial), < 23 μ m	(streo)

Parameters of Central Outer Tracker

< 0.5cm

Type Max. drift time Max. drift distance Chamber Gas Drift velocity Number of super layers Number of layers/SL Number of layers Cells/layer Radius at Center of SL Length of active region Stereo angle Tilt angle Radiation length Total number of wires Endplate load Expected resolution

Two-track resolution

Drift Chamber 100nsec 0.88cmAr-Et-CF₄(50:35:15) ~100µm/nsec Number of layers for 8 (4 axial,4 stereo) Tilt SL: 6 -> 12 12/SL96 168:192:240:288:336:384:432:480 46:58:70:82:94:106:119:131 cm 310 cm 30 35° 1.3% 63000 40 tons ~180µm

Endplate of COT

Central Outer Tracker Cell Layout

Field map of COT one cell

Tracking Performance

Performance of central outer tracker

Commissioning with Cosmic ray tracks Reconstructed tracks from 1.96 TeV p \overline{p} collisions

Calorimeters

Old: Central EM, Central Hadron, EndWall Hadron New: EndPlug EM, EndPlug Hadron

Central Electromagnetic Calorimeter

Туре	Scintilator/Lead sandwitch + Strip Chamber
Location	Outside coil, R=172.72cm
Segmentation(η)	10 projective towers, $\Delta \eta = 0.11$
Segmentation(\u0)	$24, \Delta \psi = 150$

Readout Layers Thickness Wavelength shifter and photomultiplier 20-30 lead(0.32cm), 21-31 scintillator(0.5cm) 18X₀+coil(0.85X₀)+etc, 1Labs

Energy Resolution $13.5\% / \sqrt{E(GeV)} \oplus 2\%$

Strip Chamber

Purpose	Determine shower position and transverse development		
	at shower maximum		
Location	5.9X ₀		
Wire channels	64 / module		
Strip channels	6.2cm-121.2cm: 69x1.67cm,	121.2-239.6cm: 59x2.01cm	
Chamber gas	Ar/Co ₂ (95%/5%)		
Position resolution	+- 2mm		

Fig. 1. Side view of the stack of lead and scintillator of the central electromagnetic calorimeter (located directly above the floor and rollers). Above the electromagnetic calorimeter is the stack of steel and scintillator, and light pipe fingers, of the hadron calorimeter in the same module. Appropriate substitution of plastic for lead allows the effective thickness in radiation lengths (total and as viewed by the strip chamber) to be nearly independent of angle.

Fig. 2. Layout of the light-gathering system. The only inaccessible glue joint is the relatively robust 1 in.² attachment of the folded fingers to the rods.

Central, EndWall Hadron Calorimeter

	Central	EndWall
Туре	Scintilator/Fe sandwitch	
Readout	Wavelength Shifter+PMT	
η Coverage	0~0.9	0.7~1.3
Segmentation($\Delta\eta$)	~0.1	
Segmenration($\Delta \phi$)	15 [°]	
Total Depth(λ_{abs})	4.7	4.5

Performances by test beam

Energy resolution	~ 78% / $\sqrt{E(GeV)}$	~ 99% / $\sqrt{E(GeV)}$
Typical position resolution at 50 GeV(cm ²)	10x5	10x5

Plug Upgrade Calorimeter (EM)

TypeLead/Scintillator sandwitchReadoutWave length shifting(WLS) fibersCoverage $1.1 < |\eta| < 3.6 (37^\circ < \theta < 3^\circ)$ Layers23 layers of 4.5mm lead and 4mm scintSegmentation(Dq) $3 \sim 4^\circ$ Segmentation(df) 7.5° , 15° Energy resolution $16 \% / \sqrt{E} \oplus 1\%$

first layer (10mm thick scintillator)

Shower Maximum Detector

Preshower

Type Scintillator strips, 5mm width Coverage 45° azimuthal angle

Position resolution for high energy electron ~1mm

Calorimeters

New fast, hermetic, scintillator based

- 21 X_o electromagnetic
- |η| out to 3.6
- 6.6 λ_{int} hadronic
- shower max at 6 X_o

Plug Upgrade Calorimeter (Hadron)

Type23 layers of I ron/Scintillator samplig

New : two layers after Plug EM Cal. and section between 3° to 10°.

Thickness 7λ

Calorimeters are performing well

$1^{st} W \rightarrow ev$ Candidate

Missing E_T 38 GeV

A. Goshaw Tevatron Run 2

Z->ee candidate

Muon Detectors

✓ Momentum measurement
 ✓ By tracking detectors in solenoid
 |η|<1.0 by COT+I SL+SVX
 1<|η|<2 by I SL+SVX

 $\checkmark \mathsf{Muon} \ \mathsf{identification}$

✓I dentified by drift chambers and scintillation counters placed outside Hadron Calorimeter

- \blacklozenge CMU : $|\eta|$ < ~0.6 at the end of Central Hadron Cal.
- **♦**CMP/CSP: |η| < ~0.6
- ◆CMX/CSX: ~0.6 < |η| < ~1.0
- \blacklozenge IMU: ~1.0 < $|\eta|$ < ~1.5 (for trigger) ~2.0 (for id)
- Counter information are used for trigger and resolve off-timing hits due to long readout time of drift chambers(800~1400nsec)

Muon Detector Upgrade

Figure 10.4: Configuration of the Central Muon Upgrade detector (CMP), Upgrade Scintillator (CSP) and subsorber in Run II. On the walls the circles are the ends of PMTs. On the top and bottom the trapezoids are ightguides viewed end-on.

Time-of-Flight Detector

- 216 Scintillator bars(279cmx4cmx4cm) with phototubes attached to both ends.
- Between COT and Solenoid(R~138cm)
- Pseudorapidity coverage |h|<1.</p>
- Bicron plastic scintillator BC-408 with fast rise times ~ 0.9ns
- Hamamatsu R7761, fine mesh, 19 stages PMT, to use in B=1.4T

Cherenkov Luminosity Monitor

- •Measures particles from inelastic $p\overline{p}$ collision
- Placed inside endplug calorimeter
- •Covers 3.7 < |η| < 4.7
- Conical gas-filled Cherenkov counter, readout by PMT
- •Isobutane at atmospheric pressure
 - > threshold: 9.3MeV/c for e and 2.6 GeV/c for π
 - > on average, 10 particles above threshold for each pp interaction

Particle ID by Time-of-Flight Detector

For expected 100ps resolution: 2σ separation of
K and π for p<1.6 GeV/c
p and K for p<2.7 GeV/c
π and p for p<3.2 GeV/c
Complementary to dE/dx by COT

CDF forward detectors

Miniplug

- Lead/scintillator calorimeter to cover 3.5 < $|\eta|$ < 5.5
- Placed inside the toroid magnet all the way down to the beam pipe.
- •Beam Shower Counter
 - Detetct particles near beam pipe
 - •For deffractive physics and for beam loss monitor
 - •BSCs are scintillation counters

Roman Pots

• 80 scintillation fibers and a trigger counter at three readout sections.

CDF

Roman Pot Arrangement

Roman Pot

RUN II TRIGGER SYSTEM

Detector Elements

Figure 2: Block diagram of the CDF trigger upgrade. Small blocks represent trigger hardware subsystems which feed the L1 and L2 Global decision blocks. TSI/CLK provides clock and beam crossing signals. In addition the TSI distributes global trigger signals such as L1 accept, L2 accept/reject and L2 buffer number to the rest of the trigger and DAQ.

CDF Secondary Vertex Trigger

NEW for Run 2 -- level 2 impact parameter trigger Provides access to hadronic B decays

Summary

- •CDFII upgrade is almost completed. We are making a final checkout of the detector
- New Tevatron has achieved peak luminosity ~2x10³⁰
- Physics quality data taking will start this autumn.
- First physics results of RUNI I will be presented by summer 2002
- The prospect of integrated luminosity
 - ~0.2fb⁻¹ by the summer 2002.
 - ~2 fb⁻¹ by the end of 2003.
 - ~15 fb⁻¹ by the end of 2007.
 - all at a cm energy of ~1.96 TeV
 - Cf. Run1 intergated luminosity is ~0.1fb⁻¹ at 1.80TeV