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Order a2 Corrections to the Decay Rate of Orthopositronium
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Order a2 corrections to the decay rate of orthopositronium are calculated in the framework of non-
relativistic QED. The resulting contribution is found to be in significant disagreement with one set of
experimental measurements, though another experiment is in agreement with theory.

PACS numbers: 36.10.Dr, 12.20.Ds
The discrepancy between theory and experiment for the
decay rate of orthopositronium has long been one of the
outstanding problems in precision QED. The theory is
given by
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where the lowest order decay rate is given by
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The value of G0 is 7.211 169 ms21. This is about 2.3%
above the experimental determinations at Ann Arbor of

Go-Ps�gas� � 7.0514�14� ms21 (3)

(Ref. [1]),

Go-Ps�vacuum� � 7.0482�16� ms21 (4)

(Ref. [2]), and 2.4% above the somewhat less precise
Tokyo measurement

Go-Ps�SiO2� � 7.0398�29� ms21 (5)

(Ref. [3]). The great bulk of this difference is accounted
for by the one-loop correction [4], which has been evalu-
ated with high accuracy in [5] to be

A � 210.286 606�10� . (6)

Including this 22.39% effect along with the logarithmic
terms of order a2G0 [6] and a3G0 [7], which contribute
20.01% and 20.0004%, respectively, gives a decay rate
of 7.038 202 ms21. The remaining difference with the
Ann Arbor experiments, with the 2.3% difference reduced
to 20.1%, requires a rather large positive value for B
[339�36� for the gas experiment and 257�41� for the
vacuum experiment], which is the discrepancy mentioned
above. The Tokyo experiment, on the other hand, which
disagrees with the first two by several standard deviations,
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is consistent with a small value. While the experimental
situation clearly requires more work, it is also obviously
important to directly evaluate the constant B.

While the need for calculating B has been clear for two
decades, there are two difficulties that have prevented its
evaluation until now. The first is simply the large number
(83) of diagrams that contribute, many of which have two-
loop ultraviolet infinities. More importantly, a number of
these diagrams have a serious kind of infrared divergence
associated with the fact that positronium is a bound state.

These problems have recently been overcome for the
case of parapositronium decay [8]. The main theoretical
tool used in this work is nonrelativistic quantum electro-
dynamics (NRQED) [9]. This approach allows the high-
energy part of the problem to be treated as an on-shell
scattering process. In this case the complications of the
bound state are not present, and Feynman gauge can be
used. The low-energy, bound state part can be treated in
Coulomb gauge with a small set of operators that describe
relativistic and QED corrections to a Schrödinger problem.
A matching procedure carried out with free particle scat-
tering amplitudes then allows the two parts to be combined
into a complete calculation.

The present calculation, while similar in spirit to that
of the parapositronium calculation, regulates long wave-
length singularities by giving the photon a small mass mel:
Ref. [8] instead uses dimensional regularization. We have
chosen to use a slight variation of a recent NRQED calcu-
lation of one-photon annihilation contributions to ground
state positronium hyperfine splitting [10] that uses a pho-
ton mass, as it is easily generalized to the decay rate
calculation.

In NRQED the annihilation of orthopositronium can be
accounted for by modifying the amplitude for one-photon
annihilation, 2pa�m2, to
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The independence of V4 on the momentum is a reflection
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of the fact that annihilation occurs, on an atomic scale,
nearly at a point in coordinate space. At the level of
precision required here, we will also need to consider a
modification that accounts for the interaction not being ex-
actly pointlike [11],

Vder
4 � �k, �l� �

ia3�p2 2 9�X
27m4 � �k2 1 �l2� , (8)

where X � �19p2 2 132���p2 2 9�.
In first-order perturbation theory, taking the expecta-

tion value of V4 (which corresponds to multiplying by
the square of the wave function at the origin m3a3�8p)
and using G � 22 Im�E� reproduces Eq. (2). In addi-
tion to this amplitude other operators accounting for rela-
tivistic effects are present [10], and lead to the following
ultraviolet divergent expression in second-order Rayleigh-
Schrödinger perturbation theory, which has the first-order
effect of Vder

4 included:
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Here we have renormalized the imaginary part of V4 with a
power series in a and introduced an ultraviolet cutoff mL

on the momentum space integrations.
The constants e1 and e2 are determined by requiring that

the amplitude for free particle scattering at threshold in
NRQED be equal to that determined in a complete QED
calculation. The one-loop QED calculation at threshold
has an amplitude corresponding to the decay rate
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where A�l� � 210.286 60 1 15.39l. Even though the
limit l ! 0 is taken at the end of the calculation, we
keep terms of order l in the one-loop calculation because
some terms enter the two-loop calculations with a factor
1�l. The one-loop matching calculation then allows us to
determine
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If we further define the two-loop QED decay rate as
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the two-loop matching calculation gives
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The reason for defining G2 in terms of A�l� rather than
the physical limit A�0� is a practical one, associated with
subtraction schemes required to deal with the most infrared
divergent two-loop diagrams. It also has the advantage of
leading to an exact cancellation with the factor A�l� in e1
in the matching calculation.

With this determination of e1 and e2 the NRQED decay
rate becomes ultraviolet and infrared finite, and is given by
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and numerically the constant we wish to determine is given
by B � B2 1 p2�0.9129 1 1.3302� � B2 1 22.14. We
note that the constant 0.9129 differs from Ref. [11], where
it is given as 1.16, the numerical value of 13

8 2
2
3 ln�2�. An

additional contribution of 2
1
4 to this number has recently

been found [12], removing the discrepancy. In addition,
Hill and Lepage [13] have recently recalculated a number
of QED effects in a new nonperturbative implementation
of NRQED, and obtain 0.9125(5), so all NRQED calcula-
tions are now in agreement. As an additional check of the
method, we verified that our implementation of NRQED,
when applied to the one-photon annihilation contribution
to ground state hyperfine splitting, reproduces the known
answer [10].

To finish the calculation, the free two-loop QED cal-
culation must be carried out and B2 extracted. While the
two-loop calculation is sufficiently involved that we must
defer its detailed description to a longer work [14], it is
useful to refer to the diagrams that enter the one-loop
calculation. We refer to the six diagrams of Fig. 1 as
the outer vertex (OV), inner vertex (IV), double vertex
(DV), self-energy (SE), ladder (L), and annihilation (A)

OV IV DV

SE L A

FIG. 1. Diagrams contributing to the one-loop decay rate
correction.
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TABLE I. Renormalized one-loop contributions to the orthopositronium decay rate.

Contribution p

l
� a

p
�G0 lnl� a

p
�G0

a

p
G0 l

a

p
G0

GOV 0 24 21.028 861 425 1.8756(1)
GIV 0 22 21.839 322 925 4.7124
GDV 0 0 23.567 629�21� 7.5499(2)
GSE 0 4 4.784 983 909 211.0445�1�
GL 2 2 27.821 768�32� 12.296(4)
GA 0 0 20.814 057 3�3� 0.0

Total 2 0 210.286 606�10� 15.389(4)
contributions. After the ultraviolet divergences are re-
moved by renormalization, the individual values of the
diagrams are presented in Table I.

The 83 QED diagrams that contribute to the decay rate at
two-loop order break into 11 classes that we label (a)–(k).
Class (a) consists of irreducible two-loop vertex correc-
tions which generalize the OV diagrams. While free of
binding singularities, their evaluation is complicated by the
need to carry out two-loop renormalization. Similar com-
ments apply to class (b), the two-loop generalization of the
IV diagram, and class (c), the generalization of the SE dia-
gram. We regulate ultraviolet divergences by using dimen-
sional regularization, working in n � 4 2 2e dimensions,
and the finite photon mass regulates infrared divergences.
Renormalization constants in this scheme have not, to our
knowledge, been presented in the literature: details of their
calculation will be given elsewhere [15].

Class (d) consist of diagrams with reducible two-loop
corrections, in which two separated ultraviolet divergent
one-loop corrections are present. The next set of dia-
grams, which have no ultraviolet or infrared singularities,
are those of class (e), which generalize the DV diagrams.
The most difficult to evaluate diagrams were in the (f)
class, which generalize the L diagram. Most of these
contributions diverge as 1�l, and the most singular as
1�l2. Canceling lnl�l divergences characteristic of
Feynman gauge were present that were quite difficult to
handle numerically.
5088
Class (g) consists of nine diagrams in which the DV
diagram has ultraviolet divergent one-loop radiative cor-
rections in all possible vertices and propagators. Class
(h) consists of radiative corrections to the A diagram, and
have previously been calculated in Ref. [16]. Because that
calculation used a Bethe-Salpeter formalism, a lna was
present that has to be replaced with a lnl in our present
formalism: the additive constant, however, is unchanged.
Class (i) consists of diagrams where a vacuum polarization
loop has been inserted in all possible places in the one-loop
calculation. These have also been previously treated [17]
and [18], as has the last two-loop effect we include, the
square of the one-loop amplitude, which we call class ( j)
[5,19]. As with class (h), our present formalism leads to
terms that depend on l, but the additive constant is again
unchanged.

Finally, class (k), which involves two of the three
photons emitted in the decay undergoing light-by-light
scattering, has not been calculated: because of the small
numerical contributions of these diagrams in parapositro-
nium [8] we consider it highly unlikely that the omission
of these diagrams will affect our conclusions.

The results of the calculation are summarized in
Table II.

We see from Table II that B2 � 22.38�26�, so the
complete result for B is 44.52(26). While this is indeed
a relatively large contribution, it leaves the theoretical
prediction,
TABLE II. Contributions to the orthopositronium decay rate by class.

Diagram a2

l2 G0
a2

pl
G0 lnl

a

p
� a

p
�2 ln 2lG0 � a

p
�2 lnlG0 � a

p
�2G0

a 0 0 2GOV 22 0 25.618
b 0 0 2GIV 21 0 20.705
c 0 0 2GSE 2 0 0.058
d 0 0 0 0 0 2.421
e 0 0 0 0 0 9.259(9)
f 2 ln2 A GSE1OV1IV1DV 1 22p2�3 220.50�26�
g 0 0 2GDV 0 0 21.372
h 0 0 0 0 p2 9.007
i 1 A 0 0 0 0.965
j 0 0 0 0 0 28.860(2)

Total 2 ln2 1 1 2A 0 0 p2�3 22.38(26)
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G � 7.039 934�10� ms21, (15)

well below the Ann Arbor results, by 8 and 5 standard
deviations for the gas and vacuum measurements, respec-
tively, though consistent with the Tokyo measurement. We
note that the quoted theoretical error comes primarily from
the evaluation of group (f), and does not include the un-
certainty associated with the uncalculated group (k) terms.

No conclusions can be drawn until the experimental
situation is clarified. If the Ann Arbor results are con-
firmed, while of course it is tempting to consider explain-
ing this effect through exotic interactions [20], it is worth
noting that there is also at present a significant discrep-
ancy between theory and experiment in the ground state
hyperfine splitting of positronium. While there were dis-
agreements between various calculations for some time,
recently complete agreement [13,21–23] on a value of
203 392.05 MHz has been found. This value is 4 experi-
mental standard deviations above the Yale measurement
[24] and 2.8 above the Brandeis measurement [25]. If the
present disagreement of theory and experiment in positro-
nium persists, any explanation in terms of new physics
would be most compelling if both discrepancies were ex-
plained by the same mechanism.
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