アトラス検出器を用いた重心系エネルギー7TeVでの 陽子・陽子衝突におけるミューオンを伴う事象での ウィークボソンの生成断面積の測定

久保田 隆至 東京大学理学系研究科物理学専攻(学籍番号35-67018)

博士論文審査会

2011 / 01 / 20

発表の概要

- 本研究の背景、目的、内容
- 測定手法
- 実験装置、データセット
 - LHC加速器
 - ATLAS検出器
 - 解析用データセット
- 測定の結果
 - ミューオントリガー効率
 W→µv事象の断面積
 Z→µµ事象の断面積
- 結論

研究の背景、目的、内容

- 研究の背景
 - LHC加速器が2010年3月に稼働し、世界最高エネルギー(√s = 7 TeV)の
 陽子陽子衝突を用いたTeVスケールの物理探索が行われている
 - 陽子陽子衝突の構造を理解することはLHCで行われる全ての物理解析に おいて重要
 - 理論的不定性の少ないW / Z 粒子の生成断面積は良いプローブ
 - ミューオンへの崩壊事象(Z→µµ、W→µv)はクリーンな信号
 特にZ→µµ事象は検出器、モンテカルロシミュレーションの較正に重要
- 研究の目的
 - 世界最高エネルギー(√s = 7 TeV)でのpp衝突におけるW / Z 粒子の生成 断面積が理論予想と一致するかを検証する
- 研究の内容

○ LHC加速器のpp衝突で生成される $Z \rightarrow \mu\mu$ 、 $W \rightarrow \mu\nu$ 事象の断面積の測定

pp(pp)衝突でのウィークボソン生成断面積測定

- レプトンに崩壊するモードでの測定結果
 - SppS (CERN): UA1実験、UA2実験 √s = 0.63 TeV
 - Tevatoron (Fermilab): CDF実験、D0実験 √s = 1.8, 1.96 TeV
 - RHIC (BNL): PHENIX実験 $\sqrt{s} = 0.5$ TeV

• LHC (CERN): ATLAS実験 √s = 7 TeV

生成断面積計算の不定性

- Next-to-Next-to leading order (NNLO)精度の計算
- PDF (MSTW 2008 NNLO) + パートン断面積(FEWZ):系統誤差 5 %
 - PDFの不定性
 - α_{s} (0.1145 ~ 0.1176) 由来: < 2.5 %
 - Fitting parameter由来 (90 % C.L.): < 3.5 %
 - 断面積計算の不定性

```
\sigma_W \times BR(W \rightarrow \ell \nu) = 10.46 \pm 0.52 \text{ nb.}

\sigma_Z \times BR(Z \rightarrow \ell \ell) = 0.96 \pm 0.05 \text{ nb.}

(66 < M_{\ell \ell} < 116 \text{ GeV})
```

Renormalization and factorization scale由来: < 1.0 %

Z→µµ、W→µv事象

- High-p_Tのレプトン:実験的にクリアな信号
 生成断面積測定の良いプローブ
- Z→µµ:終状態運動学を完全再構成可能

+ 性質(質量、幅)が精密に測られている ○ 検出器の較正

- ミューオン検出器の検出効率
- ミューオン検出器の運動量スケール、分解能

- パートン分布関数
 (Z粒子ラピディティ)
- W / Z の初期運動量 (Z粒子の横運動量)

博士学位論文審査会

 $M_Z = 91.1876 \pm 0.0021 \,\text{GeV}$

 $\Gamma_7 = 2.4952 \pm 0.0023 \,\text{GeV}$

測定手法

$$\sigma_{W/Z} \times Br(W/Z) = \frac{N \text{sig} - N \text{bg}}{A \cdot C \cdot L \text{int}}$$

- *N*_{sig} ATLAS実験で観測された信号事象数
- *N*_{bg} 背景事象の推定数
- A (acceptance) geometrical / kinematical acceptance (MC \mathcal{P} $\exists \mathcal{P}$)
- C (correction factor) 事象再構成の効率 (MCシミュレーション)
- L_{int} 積分ルミノシティ

各要素を測定し組み合わせる

Z→µµ、W→µv事象

- 2本のhigh-p_T、isolated ミューオン
- 反対の電荷
- Z粒子の不変質量 (66 < M_{μμ} < 116 GeV)

- 1本のhigh-pT、isolated ミューオン
- 大きなE_T^{miss}
- 大きな横質量(m_T)

$$\mathbf{m}_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{\mu} p_{\mathrm{T}}^{\nu} (1 - \cos(\Delta \phi_{\mu\nu}))}$$

背景事象

 $\frac{\text{Nsig} - \text{Nbg}}{\text{A} \cdot \text{C} \cdot \text{Lint}}$

- W / Z粒子の他のモードへの崩壊(Z→ττ、W→τv→µvv)
- トップクォーク対
- High-p_Tのミューオン、ニュートリノの生成
- QCDのdi-jet事象
- 生成断面積が大きい → コンビナトリアルな組み合わせ
- 宇宙線事象
- 崩壊点近傍を通った場合、ミューオン対をフェイク

アクセプタンス計算

 $\frac{\text{Nsig} - \text{Nbg}}{\text{A} \cdot \text{C} \cdot \text{Lint}}$

- MCシミュレーションで信号事象のアクセプタンスを見積もる(*) A・
 - N₁: 生成された全事象数
 - $\circ N_2$: 解析での位相空間のカット内に入った事象数(Truth情報)
 - for Z: p_T^{μ} > 20 GeV, $|\eta^{\mu}|$ < 2.4, 66 < $m_{\mu\mu}$ < 116 GeV
 - for W : $p_T^{\mu} > 20 \text{ GeV}$, $|\eta^{\mu}| < 2.4$, $p_T^{\nu} > 25 \text{ GeV}$, $m_T > 40 \text{ GeV}$
 - N₃: 再構成され、解析の事象選択を通過する事象数(再構成情報)

 \circ A = N₂ / N₁, C = N₃ / N₂

- 系統誤差
 - δ**A**: 3 % (W), 4 % (Z)
 - PDFセット内でのfitting parameterの不定性: 1.8% (W), 1.6% (Z)
 - 3種類のPDFセット間の比較:1.1%(W),2.0%(Z)
 - 計算のモデリング(PYTHIAとMC@NLOの比較):1.6% (W), 2.8%(Z)
 - δC: 0.4 % (W, Z)
 - 3種類のPDFセット間の比較0.3 % (W, Z)
 - 低エネルギー(<1 GeV) Final State Radiationモデリング: 0.2 % (W, Z)

Default set: PYTHIA (event generator)+ MRST LO (PDF)

アクセプタンス補正

 $\frac{\text{Nsig} - \text{Nbg}}{\text{A} \cdot \text{C} \cdot \text{Lint}}$

 実データの測定から "C"に補正をかける (ミューオントリガー etc.)

$$C_{\text{corrected}} = C \times \frac{\varepsilon_{\text{data}}}{\varepsilon_{\text{MC}}}$$
 scale factor

ルミノシティ測定

- pp非弾性散乱の基準断面積(σ_{vis})を測定
- チェレンコフ検出器でpp非弾性散乱を計数、基準断面積と比較

Nsig – Nbg

int

 $\mathbf{A} \cdot \mathbf{C}$

実験装置、解析用データセット

Large Hadron Collider (LHC)

- 世界最高エネルギー√s = 7 TeVの陽子陽子衝突型加速器 (デザイン値:14 TeV)
- ルミノシティ:10³² cm⁻²s⁻¹を達成(2010年10月13日)
 (デザイン値:10³⁴cm⁻²s⁻¹)
- 4つの大型検出器
 - ATLAS, CMS, LHCb, ALICE

ATLAS検出器

内部飛跡検出器(Inner Detector: ID)

- ソレノイド磁場 (2.0 T)
- 3種類の飛跡検出器
 - Pixel Detectors (Pixel)
 - |η| < 2.5
 - 3 ヒット / track
 - チャンネル分解能:
 - 10μm (Rφ), 115μm (z)
 - Semiconductor Trackers (SCT)
 - |η| < 2.5
 - 8 ヒット / track
 - チャンネル分解能:
 - 17μm (Rφ), 580μm (z)
 - Transition Radiation Tubes (TRT)
 - $|\eta| < 2.0$
 - 36 ヒット / track
 - チャンネル分解能:130µm

ミューオン検出器(Muon Spectrometer:MS)

- トロイド磁場
- 三層構造(Inner + Middle + Outer)
- 飛跡検出器(|η| < 2.7)
 - Monitored Drift Tubes (MDT)
 - $|\eta| < 2.7$
 - チャンネル分解能:80µm
 - Cathode Strip Chambers (CSC)
 - $\$ 2.0 < $|\eta|$ < 2.7 for inner only
 - チャンネル分解能:60µm
- トリガー検出器(|η| < 2.4)
 - \circ Thin Gap Chamber (TGC)
 - $-1.05 < |\eta| < 2.4$
 - Resistive Plate Chamber (RPC)
 - $|\eta| < 1.05$

ミューオン飛跡再構成

- 内部検出器(ID)トラック
 - < 数10 GeVまではミューオン検出器よりも運動量分解能が良い
 - ハドロンのバックグラウンドが周囲に多い
- ミューオン検出器(MS)トラック
 - ミューオン検出器でミューオンと識別されている
- コンバインドトラック
 - 同じミューオンで作られてIDとMSのトラックをつなぐ
 - 運動量分解能の良いミューオン

ミューオントリガー

- ヒットコインシデンス
 - 3層(R1, 2, 3 or TGC1, 2, 3)
 - 2次元座標(η φ)
- 曲率の見積り(δη δφ)
 - $\circ \delta$:仮想無限大運動量トラックとのズレ
- p_⊤閾値レベルの算出
 - \circ $\delta\eta \delta\phi情報をLUT(look up table)で統合$ (コインシデンスマトリックス) 10 m

5

○ p_T閾値レベルの決定(6段階)

E_⊥^{miss}再構成

 $E_T^{miss} = -(\sum \vec{E}_T + \sum \vec{p}_T)$ cluster muon

- (第一項):カロリーメータクラスターの横エネルギーのベクトル和
 - (|E_{cell}|/σ_{noise}) > 4 のセルをシードに3次元クラスタリング(電磁、ハドロン両方)
 - シャワー形状からhadron-like / em-likeを分類
 - 分類に依存したエネルギー補正
- (第二項):ミューオンのp_Tのベクトル和
 - ミューオンのカロリーメータでのエネルギー損失は第一項から引く

解析用データサンプル

実験データ

解析用データサンプル(MC)

• MCシミュレーションデータ

- PYTHIA (POWHEG for tt) + MRST LO*の組で生成
- Geant4 + 検出器シミュレーション + 事象再構成アルゴリズム
- NNLO計算の断面積で規格化
- QCD di-jetサンプルのみ、実データで規格化定数を求める
- $Z \rightarrow \mu \mu$ 、 $W \rightarrow \mu \nu$ にはpile up(~2 minimum bias反応を追加)

Process	Generator	S x BR (nb.)
Z→µµ (m _{ee} > 66 GeV)	ΡΥΤΗΙΑ	0.99 ± 0.05
$W \rightarrow \mu \nu$	ΡΥΤΗΙΑ	10.46 ± 0.52
Z→ττ (m _{ℓℓ} > 66 GeV)	PYTHIA	0.99 ± 0.05
$W \rightarrow \tau \nu \rightarrow \mu \nu \nu$	ΡΥΤΗΙΑ	3.68 ± 0.18
tt	POWEG	0.16 ± 0.01
QCD di-jet (1 muon with p _T > 8 GeV)	PYTHIA	10.6×10 ⁶

QCD規格化定数

- p_T > 20 GeVのアイソレートしていないミューオンを持つ事象の数を データとMCで比較
- QCD規格化定数:0.61 ± 0.01 (stat.) ±0.23 (syst)
 - 系統誤差:
 - E_tmiss > 25 GeVカットを 加えた時との中央値の差:0.21
 – アイソレーションの定義の変更 (トラック or カロリーメータ): 0.04
 – ピークの左右での中央値の差: 0.08

ミューオントリガー効率の評価

ミューオントリガー効率の評価

- (評価対象)p₇閾値 = 6 GeVの(検出器)シングルミューオントリガー
- (検出器)TGCとRPCの2つを別々に評価
- トリガーバイアスを避ける
 - A. ジェットトリガー事象を用いる
 - B. Z→µµ 事象のタグ&プローブ法

A.ジェットトリガー事象を用いた評価

ミューオンの分布

ミューオントリガー効率分布

トリガー効率長期安定性

• 2010年4月11日~2010年7月18日

MCへの補正

- ミューオントリガー効率のMCへの補正
- モンテカルロ: $W \rightarrow \mu v$

博士学位論文審査会

Edata

 ε_{MC}

 $C_{corrected} = C$

トリガー効率評価における系統誤差の導出

• スケールファクターの系統誤差

scale factor

	Endcap (%)	Barrel (%)
飛跡再構成アルゴリズム中の トリガーバイアスの不定性	0.5	1.5
p _T = 20 GeVカットに対する安定性	0.8	1.0
π粒子バックグラウンドの効果 ^(*1)	0.4	0.1
トラックの外挿方法	1.0	0.4
トラックに2つ以上のトリガーがマッチした時の 優先順位の付け方 ^(*2)	1.2	0.1
トラックの先にトリガーを探す領域の大きさ(*3)	0.2	0.1
W / Z 事象とのミューオンのη分布の違いの効果	0.3	0.5
合計	1.9	1.9

- 1. |p_T^{ID} p_T^{MS}|**カット**値(20±5GeV)
- 2. 最も近いトリガー or 最もp₇閾値の高いトリガー
- 3. $\Delta R = 3 \sigma \pm 1 \sigma$

B.タグ&プローブ法による評価

- Z→µµ事象の2本のミューオン(タグ&プローブ) ○ 不変質量のカットでバックグラウンドを排除
- タグミューオンがイベントトリガーを鳴らしたことを要求 プローブミューオンのトリガーバイアスが無くなる endcap: 0.865 +- 0.035 (stat)
- プローブミューオンでトリガー効率を測定

barrel : 0.747 +- 0.047 (stat)

W/Z断面積測定

W/Zプリセレクション

- 宇宙線、検出器ノイズのイベントを 排除するセレクション
 - 1つ以上のバーテックスを要求し、宇宙線事象を排除
 - 再構成に用いられたトラック数 > 2
 - 原点からの距離(z座標) < 150 mm
 - E_T^{miss}を用いるW→µv測定では、
 上記起源と疑わしいジェットを排除
 イベントロス < 0.01 %
- high-p_Tのミューオン(コンバインド)を要求
 - \circ p_T > 15 GeV

$$\circ$$
 $|\eta| < 2.4$
 \circ $p_T^{MS} > 10 \text{ GeV}$

$$\circ |p_T^{ID} - p_T^{MS}| < 15 \text{ GeV}$$

○ |z0| < 10 mm

トリガー効率測定と同一

 W→µv、Z→µµ MCはバーテックスの数 (パイルアップ)を事象毎にウェイト アクセプタンスへの影響~0.2%

W→µv 事象の断面積測定

ミューオンアイソレーション

- ミューオンから∆R < 0.4 の中のIDトラックのp_T の和を ミューオンのp_Tで割った値が0.2以下
 - プリセレクション後

W→µv全事象選別後

W→uv:背景事象

QCD事象: QCD、non-QCD事象のIsolationカットへの効率を評価し、
 シグナル領域に残る事象数を推定

$$N_{loose} = N_{nonQCD} + N_{QCD}$$

$$N_{isol} = \varepsilon_{nonQCD} N_{nonQCD} + \varepsilon_{QCD} N_{QCD}$$

$$N_{QCD} = \frac{N_{loose} \varepsilon_{nonQCD} - N_{isol}}{\varepsilon_{nonQCD} - \varepsilon_{QCD}}$$

- 宇宙線:
 - 宇宙線がイベントセレクションを 通過する確率(non-colliding bunch):
 ε = (1.1±0.2 (stat))×10⁻¹⁰
 - ミニマムバイアスの断面積: 50±10 (stat) mb
 - オーバーラップ:
 1.1×10⁻¹⁰×50 mb×310 nb⁻¹
 = 1.7±0.8 (stat)

• N_{loose}: Isolation 以外のカットをかけた事象数 (1272)

Nsig

- N_{isol}: W→µv事象数 (1181)
- ・ ε_{nonQCD}: W / Z事象のミューオンがisolatedな確率

 Z→μμ事象で見積り: 0.984 +- 0.10 (syst)
- ・ ε_{QCD}: QCD由来のミューオンがisolatedな確率

 プリセレクション後、15 < pT < 20 GeVのミューオンを
 コントロールサンプルとして見積り:
 0.226 +- 0.006 (stat)

Sample		Predicted Events
	MC $\overline{Z \to \mu\mu}$	$34.9 \pm 0.2 \text{ (stat)} \pm 2.2 \text{ (syst)}$
	$Z \to \tau \tau$	$1.4 \pm 0.0 \text{ (stat)} \pm 0.1 \text{ (syst)}$
	$W \to \tau \nu$	38.3 ± 0.2 (stat) ± 2.5 (syst)
	tĪ	$4.3 \pm 0.0 \text{ (stat)} \pm 0.3 \text{ (syst)}$
	QCD	$21.1 \pm 4.5 \text{ (stat)} \pm 8.7 \text{ (syst)}$
	Cosmic	1.7 ± 0.8
	Total	103.3 ± 10.9

 $W \rightarrow \mu \nu : E_{T}^{miss} , M_{T}$

- (自分以外の)全事象選別後のE_T^{miss}、横質量
 - アクセプタンス、QCDスケール補正後
 - イベント数で規格化
 - エラーは統計のみ

W→µv:ミューオン分布

-2

-1

0

博士学位論文審査会

1

2

3 0^µ

W→µv:生成断面積×崩壊分岐比

- 信号事象数:1181
 - W+: 709
 - W-:412
- バックグラウンド事象数:103.3 ± 10.9 (syst)
 - W+: 56.4 ± 6.5 (syst)
 - W-: 47.1 ± 4.6 (syst)
- アクセプタンス (A×C): 0.364 ± 0.018 (syst)
 - W+: 0.370 ± 0.019 (syst)
 - W-: 0.355 ± 0.018 (syst)
- 積分ルミノシティ: 310 ± 34(syst) nb-1

 $\begin{aligned} \sigma_W \times BR (W \to \mu \nu) &= 9.57 \pm 0.31 \text{ (stat)} \pm 0.48 \text{ (syst)} \pm 1.05 \text{ (lumi) nb.} \\ \sigma_W \times BR (W^+ \to \mu^+ \nu) &= 5.69 \pm 0.23 \text{ (stat)} \pm 0.29 \text{ (syst)} \pm 0.63 \text{ (lumi) nb.} \\ \sigma_W \times BR (W^- \to \mu^- \nu) &= 3.87 \pm 0.20 \text{ (stat)} \pm 0.20 \text{ (syst)} \pm 0.43 \text{ (lumi) nb.} \end{aligned}$

Z → µµ 事象の断面積測定

Z→µµ:背景事象

- total: 0.364 +- 0.163
- 宇宙線の影響は無視できる

$W \rightarrow \mu \nu$	0.030 ± 0.010
W ightarrow au u	0.001 ± 0.001
$Z \to \tau \tau$	0.087 ± 0.007
$t\overline{t}$	0.108 ± 0.011
EW Total	0.226 ± 0.018
QCD	0.138 ± 0.162
Total background	0.364 ± 0.163

Nsig – Nbg

 $A \cdot C \cdot L_{int}$

Z→µµ:ミューオン対不変質量

Z→µµ:ミューオン運動量スケール、分解能

Z→µµ:ミューオンの分布

- **C**: 0.774 ± 0.043
 - バーテックスの数の補正: 0.998 ± 0.002
 - ミューオントリガー効率の補正: 0.982 ± 0.006
 - PYTHIAでミューオン対の生成方向を計算(23.0% (EE), 28.6% (BB) 48.4% (EB))
 - Endcap、barrelの効率の違いを考慮して補正 $\varepsilon_Z = 1 (1 \varepsilon_{\mu 1})(1 \varepsilon_{\mu 2})$
 - ミューオン飛跡再構成効率の補正: 1.000 ± 0.048
- **A×C**: 0.369 ± 0.023
- 系統誤差: 6.2 % (A×C)
 - PDF、パートン断面積の理論的不定性:4%(A),0.4%(C)
 - パイルアップの影響の見積り: 0.2 %
 - ミューオントリガー効率:0.6 %
 - ミューオン飛跡再構成効率:4.8%
 - ミューオンp_Tに関するカットの不定性: 2.1 %

 $(p_T, isolation, M_{uu})$

- Z→μμ事象のミューオン
 - ミューオン対の質量ピーク位置(スケール:0.5%)
 - ミューオン対の質量ピーク幅(分解能: 0.5 %)
- ミューオンのアイソレーション(2.0%)

Z→µµ:生成断面積×崩壊分岐比

- 信号事象数:109
- バックグラウンド事象数:0.364 ± 0.163
- アクセプタンス(A×C): 0.369 ± 0.023
- 積分ルミノシティ: 331 ± 36(syst) nb-1

 $\sigma_{Z/\gamma^*} \times BR(Z/\gamma^* \to \mu^+ \mu^-) = 0.87 \pm 0.08 \text{ (stat)} \pm 0.06 \text{ (sys)} \pm 0.10 \text{ (lum)}$ nb.

生成断面積の√s依存性

- W→µv、Z→µµ共に理論予想と一致
- W→µvは電荷ごとの生成断面積も一致

展望

まとめ

- 世界最高エネルギー√s = 7 TeVの陽子陽子衝突で生成される
 W / Z 粒子の生成断面積の測定
- → LHC加速器での最初期データを用いた最初のW / Z 解析
 - 衝突開始から4カ月分、約300nb⁻¹のデータを使用
 - 結果は誤差範囲内で理論予想と一致
- → ATLAS実験でのW / Z 生成断面積測定の手法を確立した
- 実データでのミューオンの検出効率評価
 - ジェットトリガー事象を用いたトリガー効率の評価
 - ○(ミューオン検出器のヒット情報を利用した飛跡再構成効率の評価)
- → ATLAS実験の公式な解析に採用
 - ATLAS実験で最初の $Z \rightarrow \mu\mu$ タグ&プローブ法を用いた
 - ミューオン検出効率の評価
- → 今後のATLAS実験での精密測定、新物理探索の重要な一歩

バックアップスライド

TGCのヒット効率

- TGC L1_MU6のデータとMCの差:~8%
 - MCではTGCヒット効率は100%と仮定
 - 実際の測定結果を反映したMCでテスト
 - → 差は3%に減少する

クロストークの効果

- クロストーク等で隣り合うチャンネルが鳴る
 → 一定のルールで1チャンネル選ぶ
- チャンネルがずれ、ヒットがコインシデンスウィンドウからこぼれ落ちる
- コインシデンスマトリックスの幅を広げて対処
 ミューオン

2011年1月20日

トリガーアクセプタンス

RPC

effect of surrounding jets (isolation effect)

ミューオンのη分布

- ミューオンの大部分はBメソンのセミレプトニック崩壊から
- η分布がW / Z由来のミューオンと異なる
- 現在のビニング(endcap / barrel)でこの効果は測定のバイアスとなる

Itries / 0.24	$\int_{-1}^{-1} L dt = 331 \text{ nb}^{-1}$	• Data 2010, $\sqrt{s} = 7 \text{TeV}$ • W $\rightarrow \mu \nu$ MC	 データでトリガー効率のη分布を作る MCで求めたW / Z 由来のミューオンの分布 で重みをつけ、ビン内での平均値を算出 				
டு ₅₀₀							
400	F 🗡			derived eff.	(20 bins)	derived eff.	(40 bins)
	E 🎢 🛨		sample	endcap (%)	barrel (%)	endcap (%)	barrel (%)
300			data	86.5 ± 0.8	76.3 ± 0.7	86.5 ± 0.7	76.3 ± 0.7
			$Z/\gamma^* \to \mu \mu$	86.2 ± 0.8	75.8 ± 0.8	86.2 ± 0.8	75.8 ± 0.8
200		· · · · · · · · · · · · · · · · · · ·	$W \to \mu \nu$	86.2 ± 0.7	75.9 ± 0.8	86.2 ± 0.7	75.9 ± 0.8
100		p_ > 20 GeV			の見御		
	-2 -1 5 -1 -0		∃ トリガー効率評価への影響: < 0.5 % → 系統誤差の一つ η (φについては無視できるほど小さい)				
	-2 -1.5 -1 -0.	0 0 0.5 1 1.5 2					
		Muon η					

L1ジェットトリガーアルゴリズム

- |η| < 3.2の範囲でジェットを探す
- 電磁 + ハドロンカロリーメータの情報
- 定義された($\eta \times \phi$) ウィンドウ内部の E_{τ} の和が閾値を超えた時に鳴る
- ウィンドウサイズは可変
- (η×φ)=±0.4の範囲で極大点であることを要求

Topological clustering

- 3D topological clustering
 - Grouping together neighbouring energy deposits based on their significance
 - t_{seed} : cells are used as seed
 - t_{neighbor}: cells can be used as additional seed
 - t_{cell}: cells are added to neighbor cluster
 - $\circ~$ find local maxima: (E_{cell} > 500 MeV, N_{neighbor} > 3)
 - Re-arrange (split): 1.6 particle in one cluster on average after splitting

Local hadronic calibration

- Classify hadron-like /em-like by shape variables
- Weighting step(W): for hadron-like clusters
- Invisible: break-up of nuclear bindings
- Escape: neutrino or muon
- Out-of-cluster step(OOC): for hadron-like clusters (E, $|\eta|, \lambda$)
 - energy discarded by he clustering alg. by noise thre.
- Dead Material (DM): for both correction of energy outside the active calo
- depending on region

E_T^{miss}の系統誤差

• Topocluster energy scale (1.5 %)

- E_{T} detector response (1.0 %)
 - TruthのE_Tカットとreconstruction(localhadtopo)レベルでのカットのアクセプタンスの差

Anti-kt algorithm

- Topological Clusteringで作られたclusterをinputとしてp_Tのもっとも大きな cluster (i)について次の値を求める:
 - $\circ d_{ii} = p_{Ti}^{-2}$,
 - \circ d_{ij}=min(p_{Ti}⁻²,p_{Tj}⁻²) x $\Delta R_{ij}^{2}/D^{2}$
 - jは他のcluster, D: jet size=0.4
- すべてのjについてd_{min} = min(d_{ii}, d_{ii})を求め:
 - もしd_{min} = d_{ii} -> cluster (i)をjetとする
 - もしd_{min} = d_{ij} -> i と jをマージ
- D:paremeter "Jet Size" = 0.4
- Jetの大きさは△R~0.4, fixはされない
- Collinear/Infrared radiation safe

Cone Algorithmとの比較

CMSの結果

2.9 pb⁻¹ at $\sqrt{s} = 7$ TeV CMS NNLO, FEWZ+MSTW08 prediction, 60-120 GeV [with PDF4LHC 68% CL uncertainty] $\textbf{0.97} \pm \textbf{0.04} \text{ nb}$ $Z \rightarrow ee$ $\textbf{0.96} \pm \textbf{0.04}_{stat} \pm \textbf{0.06}_{svst} \pm \textbf{0.11}_{lumi} \text{ nb}$ $\mathbf{Z} \rightarrow \mu \mu$ $0.92 \pm 0.03_{stat} \pm 0.02_{svst} \pm 0.10_{lumi} \text{ nb}$ $\mathbf{Z} \rightarrow \mathbf{II}$ (combined) $\textbf{0.93} \pm \textbf{0.03}_{\mathsf{stat}} \pm \textbf{0.02}_{\mathsf{syst}} \pm \textbf{0.10}_{\mathsf{lumi}} \ \mathsf{nb}$ 0.2 0.4 0.6 0.8 1.2 0 $\sigma(pp \rightarrow ZX) \times B(Z \rightarrow II)$ [nb]

Accelerator chain of CERN (operating or approved projects)

Duoplasmatron: 水素を電場で分解して陽子を作る 100kV

パートン運動学領域

2011年1月20日

絶対ルミノシティ測定

• 弾性散乱の微分断面積をフィット

