Supersymmetric Fine-tuning Problem and Little Hierarcy in Mixed Modulus-Anomaly Mediation

Ken-ichi Okumura

Department of Physics, Kyushu University

Discoveries of Higgs and Supersymmetry to Pioneer the particle physics in 21st Century

Kiwoon Choi, Kwang-Sik Jeong and K.O. JHEP 0509:039, Kiwoon Choi, Kwang-Sik Jeong, Tatsuo Kobayashi and K.O. hep-ph/0508029

I. Introduction

- Supersymmetry (SUSY) is considered to be the first candidate of physics beyond the SM not only as a solution of hierarchy problem but also for many attractive features like gauge coupling unification and natural candidate for cold dark matter.
- However lower bound for m_{h^0} measured in LEPII suggests a direction to heavy \tilde{t} and some degree of fine-tuning in parameters of the MSSM (SUSY fine-tuning problem).
- We propose a new scenario which solves the SUSY fine-tuning problem without any modification of the MSSM based on SUSY braking model inspired from KKLT flux string compactification.

- Typeset by FoilT_FX -

I. Introduction

- Supersymmetry (SUSY) is considered to be the first candidate of physics beyond the SM not only as a solution of hierarchy problem but also for many attractive features like gauge coupling unification and natural candidate for cold dark matter.
- However lower bound for m_{h^0} measured in LEPII suggests a direction to heavy \tilde{t} and some degree of fine-tuning in parameters of the MSSM (SUSY fine-tuning problem).
- We propose a new scenario which solves the SUSY fine-tuning problem without any modification of the MSSM based on SUSY braking model inspired from KKLT flux string compactification.

- Typeset by FoilT_FX -

II. Supersymmetric Fine-tuning Problem

Radiative electroweak symmetry breaking

K.Inoue, A.Kakuto, H.Komatsu and S.Takeshita, L.E.Ibanez and G.G.Ross, J.R.Ellis, D.V.Nanopoulos and K.Tamvakis, L.Alvarez-Gaume, J.Polchinski and M.B.Wise

Tuning in the radiative electroweak symmetry breaking

Radiative correction to $m_{H_2}^2$ is order of $m_{\tilde{t}}^2$

$$\Delta m_{H_2}^2 \sim -\frac{3}{4\pi^2} y_t^2 m_{\tilde{t}}^2 \ln\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \approx -2m_{\tilde{t}}^2$$

 $m_Z^2/2$ is given by the difference between $|m_{H_2}^2|$ and $|\mu|^2$.

$$\frac{m_Z^2}{2} = \frac{m_{H_1}^2 - m_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2 \approx -m_{H_2}^2 - |\mu|^2$$

 $m_{\tilde{t}} \sim m_{H_2} pprox \mu > 500 GeV$ means < 2% fine-tuning in the measure,

$$\Delta_{\mu^2}^{-1} \equiv \frac{-m_{H_2}^2 - |\mu|^2}{|\mu|^2} \approx \frac{m_Z^2}{2|\mu|^2}$$

Radiative correction in the lightest Higgs boson mass

Theoretical upper bound for m_{h_0} is given by m_Z at tree-level. However, radiative correction from y_t can raise the bound,

H.E.Haber and R.Hempfling, Y.Okada, M.Yamaguchi and T.Yanagida, J.R.Ellis, G.Ridolfi and F.Zwirner

$$m_{h^0}^2 < m_Z^2 + \frac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \left(\frac{m_{\tilde{t}}^2}{m_t^2} \right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

where $X_t = A_t - \mu \cot \beta$.

For instance, the current SM bound is translated into,

$$m_{h^0} > 114.4 \text{ GeV} \to m_{\tilde{t}} \gtrsim 500 \text{ GeV}$$
 $(X_t^2 << m_{\tilde{t}}^2)$

Here we call this tention between the tuning in determination of m_Z and m_{h^0} lower bound as supersymmetric fine-tuning problem.

III. Mixed Modulus-Anomaly Mediation in KKLT model

Compactified string theory predicts moduli fields (S, T, Z^{α}) in 4D. KKLT stabilized all of them with tunable positive cosmological constant. S, Z^{α} : flux, $K_0 = -3\ln(T+T^*)$, $W = w_0 - A\exp(-aT)$

Type IIB orientifold

S.Kachru, R.Kallosh, A.Linde and S.P.Trivedi (2003)

Mixed modulus-anomaly mediation

SUSY breaking by uplifting potential is mediated to visible fields on D3/D7 branes via modulus F-term $F^T/(T+T^*)$, which is hierarchically smaller than $m_{3/2}~(\approx m_{3/2}/4\pi^2) \to$ anomaly mediation is same order!

K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski (2004)

Relative significance α is calculable and contorolled by the power of modulus in the upligting potential [$\overline{D3}$ uplifting (KKLT) predicts $\alpha \approx 1(n_T=2)$].

$$\alpha \equiv \frac{m_{3/2}}{\ln(M_{Pl}/m_{3/2})} \frac{1}{M_0} \approx \frac{2}{n_T}, \quad M_0 \equiv \frac{F^T}{T + T^*}$$

Visible fields on D3/D7 brane ($W = \lambda_{ijk}Q_iQ_jQ_k$),

$$\mathcal{L}_{soft} = -\frac{1}{2} M_a \lambda^a \lambda^a - m_i^2 |\tilde{Q}_i|^2 - \left(\frac{1}{6} A_{ijk} y_{ijk} \tilde{Q}_i \tilde{Q}_j \tilde{Q}_k + \text{h.c.}\right)$$

Moduli mediation:

Gauge k-fn. & Kähler on D3/D7:

$$f_a = T^{la},$$
 $\mathcal{K}_{\mathrm{eff}} = K_0 + Z_i Q_i^* Q_i,$
 $Z_i = 1/(T+T^*)^{n_i}$

- L.E. Ibanez, C. Munoz and R. Rigolin Nucl. Phys. B553, 43 (1999)
- L.E. Ibanez, hep-ph/0408064; B.C. Allanach, A. Brignole and L.E. Ibanez, hep-ph/0502151

$$M_{a} = F^{T} \partial_{T} \ln(Re(f_{a})) = l_{a} M_{0}, \quad M_{0} \equiv F^{T} / (T + T^{*})$$

$$A_{ijk} = -F^{T} \partial_{T} \ln\left(\frac{\lambda_{ijk}}{e^{-K_{0}} Z_{i} Z_{j} Z_{k}}\right) = (3 - n_{i} - n_{j} - n_{k}) M_{0},$$

$$m_{i}^{2} = \frac{2}{3} V_{0} - F^{T} F^{T*} \partial_{T} \partial_{T}^{*} \ln\left(e^{-K_{0}/3} Z_{i}\right) = (1 - n_{i}) |M_{0}|^{2}.$$

^{*} D3 visible gauge/matter fields \rightarrow no moduli-mediated contribution.

Anomaly-Mediation: Randall and Sundrum (1998), G.F.Giudice, M.A.Luty, H. Murayama and R.Rattazzi (1998)

$$M_{a} = \frac{\beta_{a}}{g_{a}} m_{3/2}$$

$$A_{ijk} = -\frac{1}{16\pi^{2}} (\gamma_{i} + \gamma_{j} + \gamma_{k}) m_{3/2}$$

$$m^{2} = -\frac{1}{32\pi^{2}} \frac{d\gamma_{i}}{d \ln \mu} m_{3/2}$$

$$+ \frac{1}{8\pi^{2}} \left\{ T \left(\frac{\partial \gamma_{i}}{\partial T} M_{0} m_{3/2} + \text{H.c.} \right) \right\}$$

where $\frac{\gamma_i}{8\pi^2} = \frac{d \ln Z_i}{d \ln \mu}$.

 β_a , $\gamma_i/(8\pi^2) \to 1$ -loop suppressed, but always exists if $m_{3/2} \neq 0$ Interference term in m_i^2 via modulus dependence of γ_i .

K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski (2004)

IV. Mirage Messenger Scale and Little SUSY Hierarchy at TeV

Correlation of R.G. running of modulus mediation with anomaly mediation.

Modulus:
$$M_a(\mu) = \frac{g_a^2(\mu)}{g_a^2(\Lambda)} M_0 = M_0 - \frac{\beta_a}{g_a} \ln\left(\frac{\Lambda}{\mu}\right)^2 M_0$$

Anomaly:
$$M_a(\mu) = \frac{\beta_a}{g_a} m_{3/2}$$

They cancel at
$$\mu = \Lambda \exp\left(-\frac{m_{3/2}}{2M_0}\right) \approx \Lambda \left(\frac{m_{3/2}}{\Lambda}\right)^{\alpha/2}$$
.

$$\overline{D3}$$
 uplifting (KKLT) predicts $\mu = \sqrt{\Lambda m_{3/2}}$.

Anomaly mediation effectively shifts the messenger scale. (mirage messenger scale : $M_{\rm Mirage}$) K. Choi, K-S. Jeong, K.O. (2005)

– Typeset by Foil $T_E X$ –

V. Solving SUSY Fine-tuning by Mirage TeV Hierarchy

If we have uplifting of $n_T=1$, $M_{\rm Mirage} \approx M_0$ (Mirage TeV Mediation)

We can realize the little hierarchy by setting $m_{H_1,H_2}=0$ at $\approx M_0$.

- Typeset by FoilT_EX -

VI. Conclusion

- Raising lower bound for m_{h^0} favors heavy \tilde{t} and m_{H_2} in general which leads to fine-tuning in the electroweak symmetry breaking of the MSSM.
- We proposed a new scenario where the little hierarchy between Higgs and SUSY particles is realized by mirage messenger scale in mixed modulus-anomaly mediation without any modification of the MSSM.
- Tuning parameter $\Delta_{\mu^2}^{-1}$ can be naturally above 10% and m_{h^0} easily exceeds 120 GeV.
- ullet The scenario favors light SUSY particles $\lesssim 1$ TeV and predict distinctive relation among the gaugino and sfermion masses.
- ullet Heavy Higgs bosons and higgsinos are predicted around 100 \sim 200 GeV and LSP is pure higgsino.

– Typeset by Foil $T_E X$ –