Predictions for LHC physics from extra-dimensional gauge-Higgs unification

Yutaka Hosotani, Osaka University

Higgs particlesTo be discovered at LHC.symmetry breaking
$$SU(2)_L \times U(1)_Y \to U(1)_{EM}$$
 $m_H^2 \sim 2\lambda v^2$ Yukawa couplings $g_j \phi_H \bar{\psi}_j \psi_j$ \downarrow fermion masses $m_j \sim g_j v$

many "
$$g_j$$
", λ
No principle
Mass hierarchy

2 - Shares

Orbifolds
$$\cdots$$
 extra dimensional spacePomarol, Quiros 1998 $M^4 \times S^1$ \longrightarrow $M^4 \times (S^1/Z_2)$ $(x^{\mu}, +y) \sim (x^{\mu}, -y)$ $(x^{\mu}, \pi R + y) \sim (x^{\mu}, \pi R - y)$

Restriction - boundary conditions

C. March 1990

$$egin{pmatrix} A_\mu\ A_y \end{pmatrix} (x,-y) = P_0 egin{pmatrix} A_\mu\ -A_y \end{pmatrix} (x,y) P_0^\dagger \quad P_0 = egin{pmatrix} -1 & & \ & +1 \end{pmatrix}$$

Low energy gauge symmetry Chiral fermions Low energy theory

$$A_{\mu} = \left(igcap_{\mu} \right) \;\; rac{1}{\sqrt{\pi R}} \left\{ W_{\mu}(x), Z_{\mu}(x), A^{EM}_{\mu}(x)
ight\}$$

$$A_y = \left(\square \right) \square \left(\neg \right) \qquad \frac{1}{\sqrt{\pi R}} \Phi(x) \quad (Higgs)$$

Chiral quarks and leptons

States and

$$egin{pmatrix} oldsymbol{
u}_{eL} \ e_L \end{pmatrix} egin{pmatrix} oldsymbol{u}_L \ d_L \end{pmatrix} egin{pmatrix} oldsymbol{e}_R \ oldsymbol{u}_R \ d_L \end{pmatrix} egin{pmatrix} oldsymbol{e}_R \ u_R \ , d_R \end{pmatrix}$$

Example in flat space $U(3)_S \times U(3)_W$ model

Y. Hosotani, Tokyo 2005 - 7

4

Warped space

for

realistic Higgs & fermions

YH, Mabe, Sakamura, Noda, Shimasaki (2005)

The situation drastically changes for the better, if the extra-dimensional space is curved and warped.

Electroweak unification in warped space

YH, Mabe (2005)

YH, Noda, Sakamura, Shimasaki (2005)

$$M^4 \times (S^1/Z_2)$$
Randall-Sundrum $y = 0$ $y = \pi R$ y $y = 0$ $y = \pi R$ y $ds^2 = dx_{\mu}dx^{\mu} + dy^2$ $rac{h}{racc}$ $A < 0$ $ds^2 = dx_{\mu}dx^{\mu} + dy^2$ $rac{h}{racc}$ $ds^2 = e^{-2k|y|}dx_{\mu}dx^{\mu} + dy^2$ $M_{KK} \sim \frac{1}{R}$ $rac{h}{racc}$ $?$ $M_{KK} \sim 10 m_W$ $rac{h}{racc}$ $?$ $too small !$ $raccc$ $?$

State State

Wilson line phase
$$(F_{MN} = 0, \text{ but nontrivial})$$
 $A_w = \begin{pmatrix} a \\ a \end{pmatrix}$: $2g \int_{w_0}^{w_1} dw A_w \Rightarrow \theta_W = 2ga(w_1 - w_0)$ $(w = e^{2ky} = z^2, w_0 = 1, w_1 = e^{2\pi kR})$ W-boson mass $\int d^4x dw (-2k) \operatorname{Tr} F_{\mu w} F^{\mu}_w \Rightarrow m_W = \sqrt{\frac{2k}{\pi R}} e^{-\pi kR} \sin \frac{\theta_W}{2}$ $m_W, \theta_W = (0.2 \sim 0.4) \pi$ $k \sim M_{Pl}$ $k R \sim 12$

Higgs field

$$heta_W \leftrightarrow 2gA_w(w_1 - w_0) \Rightarrow g_4 \sqrt{rac{\pi R(w_1 - w_0)}{2k}} (v + \phi)$$

 \cdots fluctuations in θ_W

$$V_{\text{eff}}(\theta_W) = \text{const} + \frac{1}{2}m_H^2\phi^2 + \frac{1}{3}\eta\phi^3 + \frac{1}{4}\lambda\phi^4 + \cdots$$

2 - Sherring

2 - Sharperter

Y. Hosotani, Tokyo 2005 - 14

Contraction of the local division of the loc

$$\mathcal{L} = -\overline{\psi} \, i \, \Gamma^a e_a^M \Big\{ \partial_M + \frac{1}{8} \omega_{bcM} [\Gamma^b, \Gamma^c] - i g A_M \Big\} \psi$$

 $- i \, c \, \sigma' \, \overline{\psi} \, \psi$
bulk (kink) mass
Gherghetta-Pomarol (2000)

Zero (massless) modes exist only for `quarks/leptons'.

$$\begin{pmatrix} \boldsymbol{\nu_L} \\ \boldsymbol{e_L} \\ \tilde{\boldsymbol{e}_L} \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{\nu}_R} \\ \tilde{\boldsymbol{e}_R} \\ \boldsymbol{e_R} \end{pmatrix} \quad \begin{pmatrix} \boldsymbol{b_R^c} \\ \boldsymbol{t_R^c} \\ \tilde{\boldsymbol{t}_R^c} \\ \tilde{\boldsymbol{t}_R^c} \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{b}_L^c} \\ \tilde{\boldsymbol{t}_L^c} \\ \boldsymbol{t_L^c} \end{pmatrix}$$

$$f_0^{(\pm)}(z) = \sqrt{rac{1 \mp 2c}{e^{(1 \mp 2c)\pi kR} - 1}} \; z^{\mp c}$$

Fermion masses

Gauge interactions $g \bar{y}$

$$\overline{\psi} \ \Gamma^5 e_5^{\ oldsymbol{z}} \langle A_{oldsymbol{z}} \,
angle \, \psi$$

$$m_f = \sqrt{rac{\pi k R}{2} \cdot rac{(1-4c^2)(z_1^2-1)}{(z_1^{1-2c}-1)(z_1^{1+2c}-1)}} \; m_W$$

D.Z. Marian

	$\mid c \mid$
m_{e}	0.87
m_{μ}	0.71
$m_{oldsymbol{ au}}$	0.63
m_u	0.81
$m_{oldsymbol{c}}$	0.64
m_t	0.43

Explains the hierarchy.

Non-universality of weak interactions

Gauge interactions
$$\;g\,\overline{\psi}\;\Gamma^a e_a{}^\mu A_\mu\,\psi(x,z)\;$$

2 Latitude and and

$$g_4(heta_W,c)ar e_L(x)\,\gamma^\mu\,
u_L(x)\,W_\mu(x)$$

	$ heta_W$	$\boldsymbol{\mu}$	$oldsymbol{ au}$	t	
$\left rac{g_4(heta_W,c)}{g_4(heta_W,c_e)} ight $	0	1	1	1	
	π	1.00000	0.999988	0.951	

When $SU(2)_L$ is broken, weak interactions are not universal in 4-d effective theory.

preliminary

Summary

Dynamical gauge-Higgs unification is promising.

M_{KK} m_H	1 15	$.8\sim 3.5$ $50\sim 28$	5 TeV 5 GeV	7	$\frac{m_H^2}{2v^2} =$	$=(1.9\sim7)$.6) λ	
ک Natura	l fer	0.3	ass hie	Higg erarch	y predi	cted at th	e LHC energ	gies !!
	ass C	$\begin{array}{c c} s & m_e & m_t \\ \hline 0.87 & 0.43 \end{array}$		iversality				
					0 -	<i>e</i>	au	
-/	- Martin	101	in the second		Yweak	1.00000	0.999988	0.951

We might be able to see the EXTRA dimensions !

