
SUSY at LHC
Frank E. Paige, BNL

SUSY with M <∼ 1TeV is attractive extension of SM, providing:

• Natural explanation for Mh ∼ 100GeV since ∆Mh ∼ g2(1TeV) <∼ Mh;

• Consistency of EW data from LEP, SLC, Tevatron with coupling
constants needed for grand unification;

• Natural candidate (χ̃0
1) for cold dark matter;

• Decoupling of virtual corrections for low-energy processes.

But SUSY is not without problems:

◦ Must break SUSY “by hand” ⇒ many parameters generally breaking
SM accidental symmetries;

◦ No explanation for cosmological constant Λ ∼ (10−3 eV)4.
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SUSY is also good testing ground for detectors and reconstruction. Hence
extensive work by ATLAS and CMS. Will limit talk to this work.

Emphasis on results from full simulation and reconstruction, but also
results from fast parameterized simulations.

Am collaborator on ATLAS, so inevitable bias. Thanks to Albert de
Roeck for help with CMS material.

Outline:

• Brief review of MSSM.

• Inclusive SUSY searches.

• Techniques for measuring (combinations of) masses.

• Outlook

F.E. Paige -2- SUSY at LHC



Minimal SUSY Standard Model (MSSM)
For each Standard Model particle X , MSSM has partner X̃ with ∆J = ± 1

2 :

Each massless gauge boson ⇔ Massless gaugino
Each chiral fermion ⇔ Massless sfermion

Also two Higgs doublets and corresponding J = 1
2 Higgsinos.

No realistic dynamical SUSY breaking using just MSSM. Can break by
hand: all SUSY particles have SU(2)×U(1) invariant mass terms. But
most general breaking has 105+45 new parameters.

Random choice violates Standard Model accidental symmetries: gives
weak scale proton decay, µ → eγ and other flavor violation, new CP
violation, . . . .

New physics — even SUSY — might not look like a priori expectations.
Important to retain sensitivity to surprises.
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Will assume here invariance under R-parity, where

R ≡ (−1)3B−3L+2S

= +1 (all SM particles)
= −1 (all SUSY particles)

R-parity eliminates 45 parameters and implies:

• No proton decay.

• SUSY particles produced in pairs and decay to stable Lightest SUSY
Particle (LSP), usually χ̃0

1. Must be neutral and weakly interacting, so
escapes detector.

Conservation of just B or L rather than R possible, giving unstable LSP.
But WMAP results indicate cold dark matter:

Ωb = 0.044±0.004, Ωm = 0.27±0.04, ΩΛ = 0.73±0.04

LSP is good candidate: naturally gives about observed Ωmh2.
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Would like to break SUSY dynamically. Not possible just with MSSM;
must communicate breaking in hidden sector via gravity or gauge
interactions. Must avoid large flavor violation.

Many LHC studies use mSUGRA (or CMSSM) model. Has simplest
possible gravity-mediated breaking with just four parameters:

• Common scalar mass m0 at GUT scale;

• Common gaugino mass m1/2 at GUT scale;

• Common trilinear coupling parameter A0 (not very important);

• Common ratio tanβ of Higgs VEV’s at weak scale.

Also sign sgnµ = ±1 of Higgsino mass.

Not generic prediction of gravity mediation. But does provide weak-scale
spectrum consistent with low-energy constraints.
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Must solve RGEs’ to relate GUT and weak scale masses. Need iterative
solution to handle thresholds from SUSY particles.

Find complex spectrum at weak scale even for simple one at GUT scale.
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Typically find in simple models

m1 : m2 : m3 ≈ α1 : α2 : α3

M( ˜̀) ∼ m0, M(q̃) >∼ 0.9M(g̃)

But many patterns possible.
Generically expect g̃ and q̃ to be heavy, ∼ 1TeV. In many cases, χ̃0

3, χ̃0
4,

χ̃±
2 , H, A, and H± also heavy. But model dependent.
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While TeV-scale SUSY gives qualitatively right cold dark matter, detailed
calculations ⇒ need enhanced annihilation. Use mSUGRA as guide
(qualitative picture — no mass scale):
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Bulk: bino χ̃0
1; light ˜̀R

enhances annihilation.

Funnel: H,A poles enhance
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Focus point: Small µ2, so
Higgsino χ̃0

1 annihilate.
Heavy s-fermions, so small
FCNC.
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Third generation is always different even in simple mSUGRA model:

• Larger f̃L − f̃R mixing ∝ m f ;

• Yukawa couplings in RGE;

• Effects of gaugino-Higgsino mixing.

Essential to study third-generation SUSY particles (t̃i, b̃i, and τ̃i) to
understand SUSY model.

GMSB communicates SUSY breaking via gauge interactions at scale
� MPl (e.g., 100TeV). Hence predicts

• Degeneracy among SUSY particles with same SU(3)×SU(2)×U(1)

quantum numbers, so no FCNC or CP violation.

• Light G̃ (M >∼ 1eV) is LSP. Phenomenology depends on nature of
NLSP (χ̃0

1, τ̃1) and its lifetime for G̃ decay.

• χ̃0
1 is no longer dark matter.
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Inclusive SUSY Searches
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“Typical” SUSY model has gluinos and
squarks at O(1TeV) decaying to χ̃0

1 at
O(100GeV).

Cross sections known to NLO; typically
>∼ 1pb [Beenakker].

Generally decay to χ̃0
1 via several steps,

g̃ → q̃Lq̄ → χ̃0
2qq̄ → ˜̀±`∓qq̄ → χ̃0

1`
+`−qq̄

Hence expect multiple jets plus large /ET
from χ̃0

1. May also have leptons or τ’s.

Standard Model backgrounds include Z → νν̄+ jets, W + jets, tt̄, b jets
with b → νX , etc. Also backgrounds from mismeasured events.
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Typical cuts: at least four jets with pT > 100,50,50,50GeV and
/ET > 100GeV. Then plot

Meff ≡ /ET +∑
j

pT, j

Scalar pT sum measures hardness of interaction better than invariant
mass, which is sensitive to low-pT forward jets.
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Search limits in various lepton channels on same basis [CMSSUSY]:
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Full 2 → n matrix elements in ALPGEN give larger background than
parton showers, especially for W +n jets, Z +n jets [Asai].

Require MT (`, /ET ) > 100GeV to reduce W +n jets. Preliminary result
with lepton veto (left) and requiring ≥ 1 lepton (right) [Padhi]:
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Background for ≥ 1 lepton dominated by tt̄. Less sensitive to high-order
QCD effects and generally has comparable sensitivity.
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Leptonic Endpoint Measurements
In mSUGRA and most SUSY models, all SUSY particles decay to
invisible χ̃0

1 ⇒ no mass peaks. Can often identify specific decays, use
kinematic endpoints to measure mass combinations [Hinchcliffe,TDR].

Backgrounds dominated by other SUSY processes. Must choose SUSY
model points and generate all processes consistently.

Very unlikely that any such point is real. Goal is to develop analysis
techniques and reconstruction for complex events.

Simplest (trivial) endpoint example: for χ̃0
2 → χ̃0

1`
+`−,

M(`+`−) ≤ M(χ̃0
2)−M(χ̃0

1) .

For χ̃0
2 →

˜̀±`∓ → χ̃0
1`

+`− find triangular mass distribution with

M(`+`−) ≤

√

(

M2(χ̃0
2)−M2( ˜̀)

)(

M2( ˜̀)−M2(χ̃0
1)

)

M2( ˜̀)
.

F.E. Paige -14- SUSY at LHC



Must avoid e and µ flavor violation in χ̃0
2 decays to avoid µ → eγ at 1-loop

level. (Problem for SUSY model building.) Hence expect χ̃0
2 → χ̃0

1e+e−

and χ̃0
1µ+µ− with equal rates but no χ̃0

1e±µ∓.

Backgrounds from two independent decays, either Standard Model (e.g.,
tt̄) or SUSY (e.g., χ̃+

1 χ̃−
1 ) produce e+e−, µ+µ−, and e±µ∓ equally. Hence

flavor subtraction
e+e− +µ+µ−− e±µ∓

cancels backgrounds up to statistics and acceptance differences.

ATLAS and CMS have comparable acceptance for e and µ. Details are
different: cracks in EM calorimeter vs. gaps in muon chambers.
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ATLAS point SU3 is mSUGRA model in “bulk” region:

m0 = 100GeV, m1/2 = 300GeV, A0 = −300GeV, tanβ = 10, µ > 0 .

DC1 full simulation results for 5fb−1 [DC1]. Left: µ+µ− (solid), e+e−

(dash), and µ±e∓ (dash-dot). Right: e+e− +µ+µ−− e±µ∓. Fitted
endpoint is 100.25±1.14GeV; c.f. expected 100.31GeV:
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Similar results at Rome [Aracena, Ozturk].

Dilepton endpoints observable over wide range of mSUGRA parameter
space scanned with fast simulation [CMSSUSY]:
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Sometimes have multiple endpoints. ATLAS point SU1 is mSUGRA
Point in coannihilation region:

m0 = 70GeV, m1/2 = 350GeV, A0 = 0, tanβ = 10, µ > 0

Small mass splitting for both ˜̀L and ˜̀R:

M(χ̃0
2)−M( ˜̀L) = 8.5GeV, M( ˜̀R)−M(χ̃0

1) = 17GeV

Problem is to reconstruct soft leptons. Muons limited by minimum pT
needed to penetrate calorimeter and make track through muon system:
pT > 6GeV for ATLAS.

Low-pT electrons have backgrounds from jet fluctuations. Default
ATLAS reconstruction is seeded from calorimeter, optimized for
pT >∼ 20GeV. Can do better using neural net and/or likelihood.

Should also try track-seeded algorithm for low-pT electrons.
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Results for SU1 after first attempt to optimize soft electrons:
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Reconstruction (points with errors) finds both edges. But poor efficiency
for ˜̀L edge because “near” (first) lepton for this edge is very soft.

With small mass gaps, reconstruction is harder, but distinguishing which
electron is “near” (first) and “far” (second) is easier.
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Now combine leptons with jets for “bulk” point ATLAS point SU3.
Dominant source of χ̃0

2 is q̃L decay:

q̃L → χ̃0
2q → ˜̀±

R `∓q → χ̃0
1`

+`−q .

Can make q̃L either directly or via g̃ decay. In either case expect hardest
jets to be from q̃L.

For above decay chain can calculate [Bachacou,TDR]

• ``q endpoint M``q;

• Larger and smaller `q endpoints M<
`q, M>

`q;

• ``q threshold T``q given M`` cut. (T``q = 0 without any M`` cut.)

Expressions depend on relative mass values [Allanach].
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Distributions for various `+`− plus jet distributions [Allanach]:

M  (GeV)ll

0

50

100

150

200

0 50 100 150

Ev
en

ts
 / 

10
0 

fb-1 9 : :
M    (GeV)llq

0

100

200

300

400

0 200 400 600 800 1000
Ev

en
ts

 / 
10

0 
fb-1

; < < =

1000
0

50

100

150

0 200 400 600 800

Ev
en

ts
 / 

10
0 

fb-1

T    (GeV)llq

> ? ? @

0

100

200

300

400

0 200 400 600 800 1000

Ev
en

ts
 / 

10
0 

fb-1

M   (GeV)lq
>

A�B C D

0

20

40

60

80

0 200 400 600 800 1000
Ev

en
ts

 / 
10

0 
fb-1

M   (GeV)hq

E F G

M   (GeV)lq
<

0

200

400

600

0 200 400 600 800 1000

Ev
en

ts
 / 

10
0 

fb-1

H�I J K

F.E. Paige -21- SUSY at LHC



Generate masses in q̃L decay chain at random, compute edges, and
compare with measured values and estimated errors. Result [Allanach]:
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Measure relative masses to ∼ 1%, absolute χ̃0

1 mass to ∼ 10%.

Full simulation ⇒ more background below T``q threshold in ATLAS DC1
and Rome data. Not understood.
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Can do similar analysis for Point SU1 with two dilepton edges.
Instructive to look at M<

`q (left) and M>
`q (right) distributions:
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Soft lepton from ˜̀L is “near” (first) and gives triangular distribution
smeared by resolution. Soft lepton from ˜̀R is “far” (second). Maximum
M`q also requires maximum M``, so endpoint vanishes linearly.
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Decompose measured distribution (points with errors) into contribution
from 58.2 < M`` < 100.9GeV ( ˜̀R, dashed) and M`` < 58.2GeV (mainly
˜̀L, solid):
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Clearly see both structures consistent with expected endpoints at
186.7GeV and 338.5GeV. No error analysis yet.
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ATLAS point SU2 is in focus point region:

m0 = 3550GeV, m1/2 = 300GeV, A0 = 0, tanβ10, µ > 0

Considerably harder: only g̃ and χ̃±,0
i accessible.

Large gaugino-Higgsino mixing, so g̃ → χ̃0
i tt̄,χ−

i tb̄. Get S/B ∼ 1
requiring ≥ 2 tagged b jets and zero (left) or one (right) leptons plus
standard /ET and multijet cuts [Lari]:
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χ̃0
i → χ̃0

1`
+`− decays dominated by virtual Z. Require two OSSF leptons,

/ET > 80GeV, six jets with pT > 150,3×50,2×30GeV. Result for
10fb−1:
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Have in principle additional information from shape — difficult.
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Heavy Gaugino Signatures
Light gauginos typically dominate cascade decays:

B(q̃L → χ̃0
2q) ∼ 1/3, B(q̃L → χ̃±

1 q′) ∼ 2/3, B(q̃R → χ̃0
1q) ∼ 1.

While heavy gauginos mainly Higgsino, mSUGRA gives some χ̃0
4 and χ̃±

2
decays. Analysis looks for dileptons beyond χ̃0

2 edge [LesHouches]:

Four χ̃0
4/χ̃±

2 decay chains give OS, SF dileptons:

q̃L →χ̃0
4 q
|→ ˜̀±

R `∓

|→ χ̃0
1`

± [D1]

q̃L →χ̃0
4 q
|→ ˜̀±

L `∓

|→ χ̃0
1`

± [D2]

|→ χ̃0
2`

± [D3]

q̃L →χ̃±
2 q′
|→ν̃``

±

|→ χ̃±
1 `∓ [D4]

Again can use e+e− +µ+µ−− e±µ∓ to cancel backgrounds.
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Have > 103 `+`− events from
heavy gauginos over substantial
range of mSUGRA parameters.

Analyze specific points: χ̃0
4

dominates for low m0, while χ̃±
2

dominates for diagonal line.

Require `+`−, M`` > 100GeV,
/ET > 100GeV, ≥ 4 jets, and
Meff > 600GeV.

To suppress SM backgrounds, also require MT 2 > 80GeV for minimum
“stransverse” mass for `+ /ET , where

M2
T 2 ≡ min

/p1+ /p2= /pT
[max{mT (pT`1 , /p1),mT (pT `2 , /p2)}]

Note MT 2 < MW for t and W backgrounds.
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Results for Point A (100,250) and Point E(150,250):

1

10

10 2

10 3

0 200 400

 OS-SF ALL
 OS-OF ALL
 OS-SF SM

 mll (GeV)

Ev
en

ts
/1

0 
G

eV
/1

00
 fb

-1

1

10

10 2

10 3

0 200 400

 OS-SF ALL
 OS-OF ALL
 OS-SF SM

 mll (GeV)

Ev
en

ts
/1

0 
G

eV
/1

00
 fb

-1

Observe small but clear excess over OS,OF SUSY and SM backgrounds.
Can measure endpoints to ∼ 4GeV for Points A,E. Cannot resolve
various endpoints.

Heavy gaugino signals are hard but not impossible.
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New result: SU1 has `q triangular edge from q̃L → χ̃±
1 q → `±ν̃`q [Cooke].

(Note B(χ̃±
1 → `±ν̃L) = 20.2%.) Use mixed events (scaled by 90%) to

subtract SUSY background:
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Not kinematically allowed for DC1/SU3; provides additional constraint.
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(Hadronic) τ Signatures
τ decays can dominate over e/µ decays, especially for tanβ � 1, if light
τ̃1 provides only 2-body mode.

Even in mSUGRA model with unification at GUT scale, τ decays provide
independent information because:

◦ Yukawa terms in RGE running;

◦ Gaugino/Higgsino mixing for charginos/neutralinos;

◦ τL–τR mixing (∝ mτ tanβ).

Inner layer of LHC vertex detectors at R ∼ 40mm to avoid radiation
damage, so cannot tag τ → `νν. Must rely on hadronic τ decays →
narrow, low-multiplicity jets. Background from QCD fluctuations.

Have /ET from both χ̃0
1 and ν, so can only measure visible hadronic τ

momentum. Must deduce true pτ from this.
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DC1 full simulation analysis: parameterize visible ττ mass from χ̃0
2 → τ̃1τ

decays and fit to reconstructed τ+τ−− τ±τ± distribution:
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Sign subtraction assumes that fake tau background (mainly) random in
sign. Fitted endpoint is 103.5±4.9GeV compared to true 98.3GeV.
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Caveat 1: Reconstructed ττ mass has different shape at low Mττ. Need to
make acceptance correction for low-pT τ’s — not done.

Caveat 2: Shape of Monte Carlo template distribution depends on τ
polarization. Largest effect is for τ → πν:

dN
d cosθ∗

(τ−L,R → πν) ∝ 1∓ cosθ∗ .

I.e., single pi is soft for τL, hard for τR.

Polarization hard to measure ⇒ not important for Mττ?

Still want to measure it: best handle on chiral structure at LHC. Perhaps
possible: identify πν decays using E = p and compare with all decays
[Vacavant]. Needs study.
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τ decays can dominate, e.g., mSUGRA Point SU6 in funnel region,
(m0 = 320GeV, m1/2 = 375GeV, A0 = 0, tanβ = 50, µ > 0) has 2-body
decays only to τ’s, so B(χ̃0

2 → τ̃±1 τ∓) = 95.6%, B(χ̃±
1 → τ̃±1 ντ) = 94.6%.

Fit to τ+τ−− τ±τ± for 16k events (3.6fb−1) using DC1/SU3
parameterization gives 135.6±8.3GeV compared to true 126.5GeV:
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Finally consider Point SU1 in coannihilation region: small mass gaps give
soft τ’s. Reconstructed ττ mass has dismal efficiency.

 (GeV)-track,visτM
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100Try instead combining hard
reconstructed τ with any isolated
track with pT > 6GeV.

See clear OS/SS excess.

Crude version of track-seeded τ
reconstruction for soft τ’s. Need
something like this for similar
cases.

New tau1p3p algorithm for ATLAS uses track seeds and looks for
matching calorimeter clusters. Works better for low-pT τ’s.
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Third Generation Squarks
Like τ̃’s, third generation squarks t̃i, b̃i are special:

• Large Yukawa terms in RGE’s and couplings.

• Large left-right mixing proportional to mt or mb tanβ.

Crucial for understanding SUSY model — needs work.

Rely on vertex detector to tag b jets. Problems are efficiency/mistags and
combinatorics.

Typical decay chain is g̃ → t̃1t̄ → χ̃+
j bt̄ +h.c.. Then bt̄ endpoint with

t → qq̄b measures M(g̃)−M(χ̃±
1 ) [Hisano].

Fast simulation analysis. Large combinatorial background ⇒ see nothing
initially. But after sideband subtraction, endpoint emerges at right place
(471GeV):
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Analysis repeated for 10 points for
both Herwig and Pythia.

Consistently find right endpoint to
about ±2% (lines in figure).

Should try similar studies with full
simulation.
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“Stransverse Mass”
In mSUGRA B(q̃R → χ̃0

1q) ≈ 1. Generally expect some squarks to decay
directly to χ̃0

1. If M(q̃) < M(g̃), expect events with two hard jets and /ET .

Form “stransverse mass” including M(χ̃0
1):

M2
T 2 ≡ min

/p1+ /p2= /pT

[

max
{

mT (pT `1 , /p1;M(χ̃0
1)),mT (pT `2 , /p2;M(χ̃0

1))
}]

Partition /ET in all possible ways, form two MT for each partition, take
larger, and minimize over all partitions.

Partitions include correct one, so MT 2 has endpoint at M(q̃). (Must be
careful not to get stuck in false minima.)

Very useful for signal and also to reject backgrounds with two neutrinos,
e.g., tt̄ or W +W−.
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MT 2 distributions for mSUGRA points SU1 and SU3 with correct M)χ̃0
1)

and fitted endpoints:
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Compare with 〈M(q̃R)〉 = 729 and 638GeV respectively.

Of course M(χ̃0
1) not well known, at least from early data. . . .
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Vary assumed M(χ̃0
1) and redo fit:
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Quadratic dependence ⇒ not very sensitive if M(χ̃0
1) � M(q̃R). But need

better understanding of what MT 2 endpoint really measures.

Needs work.
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Measuring Spins
Can get some spin information: decay q̃L → χ̃0

2q produces qL and hence
χ̃0

2 with helicity λ = −1:
qL

q̃L

χ̃
0
2

⇐⇒

`
+
R

˜̀−
R

⇐

Hence χ̃0
2 →

˜̀∓
R `± distribution ∼

[

d( 1
2)

− 1
2±

1
2
(θ)

]2
∝ 1± cosθ.

Basic asymmetry suppressed by:

◦ Cancellation between q̃ and ¯̃q. But for pp machine valence quarks
give excess of ũ and d̃. (Suppresses effect of Higgsino mixing.)

◦ Contribution of far (second) lepton.

Analysis done only for TDR Point 5 (fairly similar to SU3). Simulate
detector response with Atlfast and make standard event selection cuts.
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Even after dilutions, see difference between `+q (red squares) and `−q
(blue triangles). Clear asymmetry for 150fb−1 [Barr]:
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(Yellow rectangles show rescaled parton level distribution.)

Shows non-zero spin consistent with SUSY expectations. . . .
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More general method is based on qq̄ → γ/Z → ˜̀+ ˜̀−. Would give sin2 θ∗

in COM for J = 0, 1+ cos2 θ∗ for J = 1. For boost-invariance use [Barr05]

cosθ∗`` ≡ cos
(

2tan−1 exp(∆η``/2)
)

= tanh(∆η``/2)

Select events with 2 leptons, MT 2 < MW , no jet with pT > 100GeV, no
tagged b jet, and

∣

∣ /pT +pT,1 +pT,2
∣

∣ < 100GeV. Results for TDR Point 5:
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Background-subtracted distributions for Point 5 and SPS1a:

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cos θ*
ll

Fr
ac

tio
n 

of
 e

ve
nt

s, 
F 

/ 0
.1

25

SUSY
UED
PS
`Data´

300 fb-1

sps1a

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cos θ*
ll

Fr
ac

tio
n 

of
 e

ve
nt

s, 
F 

/ 0
.1

25

SUSY
UED
PS
`Data´

300 fb-1

sps1a

Also works for several other cases. . . . Quite general, but does need
200–300fb−1.

F.E. Paige -44- SUSY at LHC



GMSB Models
SUSY breaking in GMSB communicated by SU(3)×SU(2)×U(1)

gauge interactions at low scale (∼ 100TeV) ⇒ no FCNC.

LSP is gravitino G̃ with M ∼ 1eV–1keV. Phenomenology depends on
nature of NLSP (χ̃0

1, τ̃1) and lifetime for G̃ decay (prompt, long-lived).
Typically longer decay chains, e.g.,

χ̃0
2 → ˜̀±`∓ → χ̃0

1`
+`− → G̃γ`+`−

No recent work, but generally expect less background and easier analysis
[TDR].

Possible exotic signatures if NLSP is long-lived:

• Non-pointing photons from χ̃0
1 → G̃γ.

• Quasi-stable charged particles (τ̃1, perhaps ˜̀R).

F.E. Paige -45- SUSY at LHC



Quasi-Stable Charged Particles
Exotic atom limits ⇒ stable particles must be neutral and weakly
interacting. But long-lived charged particles possible. Possible SUSY
scenarios:

• GMSB Model: If N5 > 1, NLSP is τ̃ → G̃τ, with 1mm <∼ cτ <∼ 1km.

• Co-NLSP quasi-stable ẽ, µ̃, τ̃ possible.

• In split-SUSY, M(q̃) ∼ M( ˜̀) ∼ 1012 GeV ⇒ g̃ forms quasi-stable
R-hadrons, giving soft interactions in calorimeter.

Quasi-stable charged particles speculative but possible.

ATLAS muon system ⇒ TOF system with R ∼ 10m and ∆t ∼ 1ns.
“Compact” CMS not dissimilar.

Trigger and reconstruction should allow such exotic possibilities.
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Know from LEP M >∼ 100GeV. Generally expect p >∼ M, so 0.7 <∼ β < 1.
Should be associated with right bunch crossing.
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σ = 0.006
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β β

ATLAS study for TDR found good
resolution for β < 1, comparable to
∆t ∼ 1ns over R ∼ 10m.

Based on old software; not in current
reconstruction.

Essential to allow for slow particles
in trigger and reconstruction. Can
ssume p <∼ 100GeV ⇒ nearly
straight tracks.

Should allow β < 1 in standard muon trigger/reconstruction.
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Outlook
Standard Model is very successful but fails to address several crucial
issues. Speculation about physics beyond the Standard Model at TeV
mass scale has been ongoing for at least 25 years.

Can only resolve such speculation by experiments capable of probing
TeV mass scale. LHC can do this starting in about two years.

ATLAS and CMS are expending a lot of effort to understand how to
extract physics from data. Have only discussed specific SUSY scenarios
here. Crucial question: can we find “any” new physics?

Must be produced ⇔ coupling to SM quanta with sufficient strength.
Then decay either to SM quanta or to charged/neutral (quasi)-stable
particles. All are detectable by ATLAS/CMS.

But, e.g., charged particles (“muons” with β < 1) might have bad χ2 and
be discarded.
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Balance between rejection of junk and acceptance of possible exotic
signatures requires careful thought. Not enough attention.

Current emphasis is more mundane: what to do with initial data sample,
perhaps 100pb−1. Would give 100k Z → ee, 100k tt̄, and perhaps >∼ 1k
SUSY events.

Even 100pb−1 at LHC might yield major discoveries! Playing with
simulated data has been fun ... looking forward to real data soon.
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