

MEG II 実験における陽電子タイミング カウンターのコミッショニング 2018

Commissioning of Positron Timing Counter in the MEG II Experiment 2018

> 2019/02/17 ICEPP シンポジウム 野内 康介 (東京大学)

Outline

➢Introduction

- cLFV (charged Lepton Flavor Violation)
- $\mu \rightarrow e\gamma$ reaction
- Signal & background events
- MEG II experiment
- Detectors
- pTC (pixelated Timing Counter)

≻Operation

- Installation & motivation
- Cooling system
- HV setting

➤Calibration

- Positron reconstruction
- Laser system
- Time calibration

➢Data analysis

- Clustering & tracking
- N-hit analysis
- pTC self tracking

Summary & prospect

cLFV (charged Lepton Flavor Violation)

Quark mixing Included in SM

• Explained by CKM theory

Neutrino oscillation

- Discovered in Super-Kamiokande
- Forbidden in SM
- Firm proof of bSM physics
- → Suggests possibility of flavor violation in charged lepton sector

Charged lepton flavor*t* violation (cLFV)

- Forbidden in SM
- Included in many new physics models
- If discovered, certain proof of new physics
- Has been searched in many experiments

$\mu \rightarrow e\gamma$ reaction

Motivation

- Considering neutrino oscillation, possible but very rare
- Included in many new physics models at observable rate
- Can search for new physics w/o directly creating new heavy particles

SM + neutrino oscillation

 $Br(\mu \rightarrow e\gamma) \sim 10^{-54}$ (little background)

Status of cLFV search

- Current upper limit is obtained by MEG
 - $Br(\mu \to e\gamma) \sim 4.2 \times 10^{-13}$ (90% C.L.)
- MEG II aims for one order higher sensitivity

•
$$Br(\mu \to e\gamma) \sim 6.0 \times 10^{-14}$$
 (90% C.L.)

10

SUSY-Seesaw Lorenzo Calibbi et al. "Flavour violation in supersymmetric SO(10) unication with a type II seesaw mechanism." JHEP, 0912:057, 2009. SO(10) SUSY-GUT: S. Antusch et al. "Impact of 023 on Lepton Flavour Violating processes within SUSY Seesaw" Journal of High Energy Physics 2006 (11), 090

ICEPP シンポジウム 2019

Signal & background events

5

Detectors

Pixelated timing counter (pTC)

Pixelated timing counter (pTC)

➢ Performance

- Pixelated design allows $N_{hit} \sim 8$ for signal event
- High time resolution can be achieved for multiple-hit events

Outline

➢Introduction

- cLFV (charged Lepton Flavor Violation)
- $\mu \rightarrow e\gamma$ reaction
- Signal & background events
- MEG II experiment
- Detectors
- pTC (pixelated Timing Counter)

➢Operation

- Installation & motivation
- Cooling system
- HV setting

➤Calibration

- Positron reconstruction
- Laser system
- Time calibration

Data analysis

- Clustering & tracking
- N-hit analysis
- pTC self tracking

Summary & prospect

DS pTC was installed for pre-engineering run 2018

Pilot run 2017

LXe, pTC, RDC

 $DS \rightarrow US$ (in turn)

20°C operation

pTC clustering

Limited

 $\sim 6.0 \times 10^{7} \mu^{+}/s$

Installation & motivation

Only 2nd-half of DS pTC was readout

pTC installation

\triangleright New this year

Beam

Detectors

Electronics

pTC detector

pTC cooling system

Positron analysis

➢Installation

ICEPP シンポジウム 2019

(partly-operational) CDCH

Full MEG II intensity

 $\sim 7.0 \times 10^{7} \, \mu^{+}/s$

LXe, pTC, RDC +

10°C operation

pTC self tracking

Limited

1/2 of DS

COBRA

magnet

Cooling system

Motivation

- In three years of data taking, radiation damage to SiPMs could increase dark current & deteriorate time resolution of pTC
- We plan $\sim 10^{\circ}$ C operation (new in 2018) using water chillers to minimize dark current
 - Deterioration would be suppressed to ${\sim}5\%$ rather than ${\sim}30\%$ at 30°C

HV setting

Motivation

- Breakdown voltage of SiPMs has temperature dependence
- Optimal HV must be re-determined to give best counter time resolution

►IV data

- IV data can be taken using readout electronics with $\sim 4nA$ precision
- Breakdown voltage is obtained by template fit of I-V curve

Breakdown voltage

- Breakdown voltage of AdvanSiD SiPM depend on temperature ${\sim}25mV/{^{\circ}\mathrm{C}}$
- $\rightarrow \sim 1.5V$ per 10°C per SiPM chain

Distribution of breakdown voltage

HV setting

Bias voltage scan

- Optimal voltage = best time resolution
- Optimal voltage is obtained with best S/N

Mean time resolution v.s. V_{br}

- Optimal voltage differs channel by channel
- Clearer relation can be obtained from "time resolution v.s. current"

 \rightarrow Optimal voltage @ $\sim 6\mu A$ for each channel

 \times Laser system is used for bias scan (\rightarrow will be explained later)

ICEPP シンポジウム 2019

Outline

➢Introduction

- cLFV (charged Lepton Flavor Violation)
- $\mu \rightarrow e\gamma$ reaction
- Signal & background events
- MEG II experiment
- Detectors
- pTC (pixelated Timing Counter)

≻Operation

- Installation & motivation
- Cooling system
- HV setting

➤Calibration

- Positron reconstruction
- Laser system
- Time calibration

➤Data analysis

- Clustering & tracking
- N-hit analysis
- pTC self tracking

Summary & prospect

Positron reconstruction

Laser system

Motivation

- 1. Laser signals can be used for signal check, bias voltage scan, various monitoring, etc. w/o beam
- 2. Laser signals can be inserted into each pixel simultaneously, and can be used for time calibration between pixels

20 30

40 50

60 70 80

Laser signal monitor

90 100

Time calibration

Laser-based method

Track-based calibration

- Multiple-hit Michel events ($\mu^+ \rightarrow e^+ \bar{\nu}_e \nu_\mu$) can be used to calibrate time between adjacent counters
- $\sim 10 15 ps$ precision should be achieved
- Calibration study for pre-engineering run 2018 still ongoing

Outline

➢Introduction

- cLFV (charged Lepton Flavor Violation)
- $\mu \rightarrow e\gamma$ reaction
- Signal & background events
- MEG II experiment
- Detectors
- pTC (pixelated Timing Counter)

≻Operation

- Installation & motivation
- Cooling system
- HV setting

➤Calibration

- Positron reconstruction
- Laser system
- Time calibration

Data analysis

- Clustering & tracking
- N-hit analysis
- pTC self tracking

Summary & prospect

Clustering & tracking

Clustering

• Make cluster of hits at roughly same time

Tracking

- Combine discontinuous hit information into single track
- Track starts from track seed
- Kalman Filter is used to extrapolate track
- Segments are fitted with GENFIT

N-hit analysis

Motivation

- No track information from (no/partly-readout) CDCH
- pTC analysis must be performed with cluster information
- Fixed geometrical combination of pixels can be used

Fixed geometrical combination

➢Result

- Single counter resolution is worse than expectation due to noise, electronics jitter
- Overall time resolution degradation is suppressed by multiple-hit scheme

pTC self tracking

Motivation

- pTC can now be used as tracker as well as simple timing detector
- Events with arbitrary combination of hit pixels can be analyzed
- More realistic pTC performance can be evaluated

Idea of self tracking

- Horizontal position from channel time difference
- Radial coordinate of hits from hit pattern

Outline

➢Introduction

- cLFV (charged Lepton Flavor Violation)
- $\mu \rightarrow e\gamma$ reaction
- Signal & background events
- MEG II experiment
- Detectors
- pTC (pixelated Timing Counter)

≻Operation

- Installation & motivation
- Cooling system
- HV setting

➤Calibration

- Positron reconstruction
- Laser system
- Time calibration

➤Data analysis

- Clustering & tracking
- N-hit analysis
- pTC self tracking

➢Summary & prospect

Summary & prospect

➤Summary

- MEG II experiment searches for new physics through cLFV with unprecedented sensitivity
- All detectors were installed in pre-engineering run 2018 for the first time
- Commissioning of pTC was successfully completed

➢ Prospect

	Pilot run 2017	Pre-engineering run 2018	Engineering run 2019
Beam	$\sim 6 \times 10^{7} \mu^{+} /_{S}$	Full MEG II intensity \sim 7.0 \times 10 ⁷ $\mu^+/_s$	Full MEG II intensity $\sim 7.0 \times 10^7 \mu^+/_s$
Detectors	LXe, pTC, RDC	LXe, pTC, RDC, (partly-operational) CDCH	LXe, pTC, RDC, (fully-operational) CDCH
Electronics	Limited	Limited	Full
pTC detector	$\text{DS} \rightarrow \text{US}$ (in turn)	DS 2nd-half	Both DS & US
Positron analysis	pTC clustering	pTC self tracking	pTC + CDCH tracking

- First data analysis using both pTC & CDCH information is ongoing
- pTC time reconstruction method is being revised for further improvement (→74th JPS 14aK210-11)

Backup slides

Positron spectrometer

COBRA (COnstant Bendint RAdius)

- Bends positrons at a constant radius independent of emission angles
- \rightarrow Signal positrons enter pTC region
- Gradient field to sweep positrons away from detector region
- \rightarrow Reduce pile-up

>CDCH (Cylindrical Drift CHamber)

• Reconstructs positron track

➢pTC (pixelated Timing Counter)

• Reconstructs positron time

Positron event display

Cooling system

➢How it works

- Water from water chiller circulate around BP & cool each SiPM chain
- Dry air flows out of gas tubes to prevent water condensation

support structure

Waveform analysis optimization

Motivation

- Constant fraction method is used to obtain signal time
- Optimal fraction to give best time resolution can be obtained from constant fraction scan
- Two hit analysis is used

constant fraction scan

Energy calibration

≻Goal

• Obtain relation between charge & energy deposit for each pixel independently

≻Method

- Compare reconstructed charge distribution with MC energy deposit distribution
- Obtain energy scale factor so that peak position in the two distributions match

$\begin{array}{l} Energy \ scale \ factor \\ = \ edep_{peak} \div charge_{peak} \\ & (for \ each \ pixel) \end{array}$

ICEPP シンポジウム 2019

Whit Position calibration W ≻Goal X t_2 t_1 $t_{hit} =$ $w_{hit} = v_{eff} \times \frac{t_2 - t_1}{2}$ • Obtain $v_{eff} \& t_{offset}$ • v_{eff} : effective velocity of scintillation light in pixel • t_{offset} : time offset between two channels included in $t_2 - t_1$

Method

- Fit hit distribution with trapezoid convoluted with Gaussian
 - center: calibrate v_{eff} ,

t_{offset}

- length: calibrate v_{eff}
- sigma: position resolution

spxhits.l (spxhits.pixelid==120)

Position calibration

Whit

Hit rate distribution

Motivation

- Mockup CDCH was installed in 2017
- Hit rate distribution was inconsistent with MC ← due to mockup CDCH material?

➢ Result

• Achieved hit rate distribution was consistent with MC

32

Time reconstruction improvement

Energy deposit dependence

• Hit time & hit time resolution depend on energy deposit in pixel due to time walk effect & photon statistics

Fitted value of par[1]=Mean

Fitted value of par[2]=Sigma

.....

0.003

0.004

Reconstructed energy deposit [GeV]

0.005

0.006

0.002

0.001

- Better positron time resolution can be obtained by
 - Correcting time walk effect
 - Putting weight on hits with larger energy deposit

Time reconstruction improvement

➤w position dependence

- Closer channel to hit point is expected to have better time resolution than the other
- Hit time reconstruction should be optimized according to the hit position

野内 康介

34