ATLAS実験のsTGC検出器を用いた後段ミューオントリガー のアルゴリズムの開発及びその性能評価

The support structure of one of the two New Small Wheels

Kumaoka

Shinshu University High Energy Physics lab Master 1 Takuya Kumaoka

1/17

ATLAS

Contents

1 LHC ATLAS実験 RUN3 Upgrade

2 HLT sTGC algorithm

3 Result

4 Summery & Future work

1.1 LHC-ATLAS実験

LHC-ATLAS実験

陽子-陽子衝突により、高エネルギー状態を作り、

様々な素粒子・ハドロン物理のモデルの検証および新物理の発見を目指した実験

2012年に標準模型が予言する最後の粒子であるHiggs粒子を発見 昨年Higgs粒子のbb崩壊が観測された

衝突頻度を上げ、統計数を増やすことにより、 標準模型の精密測定・新物理の発見を行う

	重心系エネルギー	積分ルミノシティ
RUN1(2011 ~2013)	7-8 TeV	30 fb-1
RUN2(2015 ~2019)	13-14 TeV	150 fb ⁻¹
RUN3(2021~)	14 TeV	300 fb ⁻¹

Kumaoka

1.2 High Level Trigger (HLT)

Trigger system 大量のeventを高速解析し、 興味のあるeventを選別するsystem

極力高エネルギーの衝突eventが見たい \rightarrow z軸方向の運動エネルギーが大きな質量に変換されたevent \rightarrow 横方向運動量 (p_{T})が大きい粒子が発生しやすい

Level-1 Trigger (L1) Hardware <u>High Level Trigger (HLT)</u> Software \rightarrow L1からの位置情報周辺領域に絞ってより精度の良い p_T を再構成

 \rightarrow 閾値以上の p_T の粒子のみを取得

Higgs粒子の質量再構成においてμを正確捉えることは非常に重要である。

超対称性粒子など崩壊においてもhigh p_T の μ が生成されると予想される。

TeV 領域に超対称性粒子のような新しい粒子が 存在している場合、 その輻射補正が Bs $\rightarrow \mu \mu$ 崩壊のような低い質量領域にあらわれることが期 待されている。

このようなeventによる μ は p_T は少し小さいため、

この範囲においては閾値を保つ必要がある

SUSY模型におけるB_s→µµ

1.4 研究動機

RUN3において瞬間LuminosityがRUN2の <u>1.5 倍程度</u> となる

RUN2までの Inner End-cap muon spectrometer Small Wheel: TGC(トリガー用) + MDT, CSC(精密測定用)

 p_T の閾値を維持したままでは

eventが処理しきれない

New Small Wheel(NSW): (カバー領域 1.3 < |η| < 2.7) Micromegas + <u>sTGC</u> (トリガー用+精密測定用) に置き換えられる

<u>新しい検出器に対応したalgorithmが必要となる</u>

ATLAS検出器 Overview

Kumaoka

1.5 small-strip Thin Gap Chamber (sTGC)

sTGC:8層、構成検出器は以下の3種類

strip: R_{proj} 方向に分解能が高い / ϕ 方向に感度無し

pad : Rの分解能は低い / R, φの両方に感度がある

wire: R方向に感度無し / φ方向に高い分解能

sTGC detector logic

sTGC structure

7/17

Kumaoka

1.6 p_Tの計算

PTは磁場領域を通過することによる**飛跡の曲がり具合β**を用いて計算できる

 β を求めるためにはNSWにおいて、座標(η , ϕ)および入射角 θ _{NSW}を正確に求める必要がある。(η = -log(tan θ /2))

8/17

Kumaoka

2.1 Strip data O Clustering

0)1 hitに対し複数のstripが反応し、 Rproj情報とchargeの情報が送られてくる

1)hitのあるstripの中で 電荷の一番大きなstripを見つける

2)1. のstrip の±6.5 mm (strip 2本分) の範囲にあるhit stripを探す

3)各位置の電荷量をGauss fitを行い そのピーク値でのRprojをHitのRprojとする

Kumaoka

2.3 virtual pad の範囲決定

layerごとにpadがずれ ており、8 layerを 用いることにより、 8分の1 pad(virtual pad) を作ることができる

virtual pad の上限決め

10/17

hitのあった各layerによって virtual padを作ることによって Clusterを探すRの範囲の上限・下限を決める

上限決め:

各layerで、R情報+40 mmのところで 原点から傾きを出し、最小の傾きを採用する

下限も逆の同様の操作を行う

Kumaoka

2.4 最適なClusterの組み合わせの選択

1) 前行程で作ったRの範囲でclusterを探す

2) clusterの全通りの組み合わせ作る
 図の場合: 1 × 2 × 2 = 4 通り

3) clusterの組み合わせから、 最小二乗法を用いて θ , η を計算する

4)作った組み合わせの中で、切片の絶対値が 最も小さいTrackのみを採用する。

5)用いたpadの組み合わせから、 各padの ϕ の平均値をtrackの ϕ とする

- 6) ¢を用いてRを計算する
 - $\mathsf{R} = \mathsf{R}_{\mathsf{proj}} / \cos \phi$

11/17

Kumaoka

3.1 Simulation Condition

Single Muon Simulation

 $p_T = 100 \text{ GeV}$

100,000 Events

 ϕ flat

 $\eta > | 1.3 | \&\& \eta < |2.7|$ (NSW cover region)

3.2 θ resolution

 θ 分解能 $\sigma = 1.2$ mradとなったため、改善の必要がある。

Kumaoka

2019/02/19 ICEPP symposium

13/17

3.3 η , ϕ resolution

$\eta - \phi$ plane 要求分解能 0.04 × 0.04 rad

η分解能

♦ 分解能

14/17

η, φ の分解能はそれぞれ 0.0007, 0.01 rad となり十分に要求分解能を満たしていると考えられる

Kumaoka

3.4 øによるvirtual padの中心のずれ

この ϕ のずれがcos ϕ としてprojectionから実際の 値に戻す時に θ 、 η の分解能を悪くすることがわかった

Kumaoka

2019/02/19 ICEPP symposium

strip

15/17

3.5 η - ϕ plane efficiency map

of truth μ

cover region of NSW

 μ のみのシンプルな eventを使用 10万 events \rightarrow 4万 events

白はevent数が足りていないため

16/17

ところどころefficiencyが 小さいところがある

ほとんどの領域でMC truthから 性能要求の範囲にtrackを作ることが できていることが確認できた

Kumaoka

4 Summery & Future work

Summery

- ・RUN3でのアップグレードに伴い、現行のsmall wheel が<u>NSW</u>に代わる → NSWを用いたHLTのalgorithmを新たに作る必要があり今回<u>sTGC</u>のみでの algorithmを開発し、評価を行った。
- ・ η , ϕ の分解能は要求分解能を満たしていることがわかった。
- ・θは要求分解能を満たすに至らなかったが、projectionの値から実際のhit点の値に 戻す際に用いる<u>φの分解能を上げられる見込み</u>があり、 <u>θの分解能も上げられる</u>と考えられる。

Future work

・<u>shower event</u>はpadの組み合わせを作る際、 現状処理しきれないため、そのアルゴリズムを別に考える必要がある

・*p_Tの計算をまだ行うことができていないためその計算を行う*

Back Up

Accelerating Science

η resolution

dηの分布のtailはcosφの誤差によるものであることが分かった fit によって誤差の中心を0に持っていけば左右対称になる。(検討中)

Kumaoka

2019/02/19 ICEPP symposium

16/19

$d\eta$ (track - truth) (projection)

比較的対照的になり、 tail 部分が消えた

ηの非対称部分は φの誤差によるものであった

2019/02/04 HLT meeting

$d\eta$ (track - truth) (projection)

Kumaoka

2019/02/04 HLT meeting

Detector Efficiency

strip
 *D*efficiency

Kumaoka

efficiency: truth に対して± 1.6 mmの範囲にhit のchannelがあれば 1

clustering するとefficiencyが下がるのが見えていた(左→中図)

cluster *O*efficiency

clusterのefficiency($\mu \mathcal{O}$ み)

14/15

 δ -rayの無いeventにおいては、stripより劣るものの9割近くのefficiency

2019/02/04 HLT meeting

pad efficiency map

truthのhitに対し, |x| < 50.0 mm, |y| < 300.0 mm の範囲にpadのhitがあれば、 efficiency = 1

(root のversionの都合上色が反転できていません)

Kumaoka

2019/01/21 HLT meeting

9/13

strip & cluster efficiency map

truthのhitに対し, |R| < 1.6 mmの範囲にstrip(もしくはcluster)の hitがあればefficiency = 1

stripのefficiency

cluster

Ø
efficiency

10/13

clusteringすることによってefficiencyが悪くなっている (不適切な方向にstripのhitをまとめ上げている)

Kumaoka

2019/01/21 HLT meeting

Clustering ①

今までのclustering手法

連続した(1本抜けているだけは 連続しているとみなす) stripを一つのhitとしてまとめる

Rの値は一つのhitとした stripのRの平均値をとる

二粒子以上が入り、連続したstrip数が増えると 分解能が悪くなる Gaus fit 初期条件:

constant = 最大電荷 $\mu = 平均R, \sigma = 2.27 \text{ mm}$

Chargeがgaus分布しているため、 これを用いることにより1strip 以上(3.2 mm) の分解能を出すことができる Average R

Figure 2: Illustration of strip signal digitization.

https://twiki.cern.ch/twiki/pub/Atlas/ NSWdigitization/sTGC_Digitization.pdf

2.1 Strip data Clustering

1. peak chargeが0.2 KeVより大きく、 hitのあるstripの中で電荷の 一番大きなstripを見つける

2.1. のstrip の±6.5 mm (strip 2本分) の範囲にあるhit stripを探す

3. 各位置の電荷量をGauss fitを行い そのピーク値でのRをHitのRとする

4. 1回のclusteringに用いた stripは除いて同様にhitのRを求める

5. stripのhit dataが2本以下なるまで行う

Clustering (2)

1 hitに対して5 本より多くのstripがなった時には余りが出る →余ったstripでclusterを作らないように、Peak chargeの値が0.2 以下の際にも clusteringを止めることとした

virtual pad width problem

ずれたhitが存在しても、 適切なhitが存在していれば、 2 Trackが作られ、 上図の不適切なpadの 組み合わせは消える。 (上図 layer 3)

1 layerでもずれたpadのhitが 存在した時、そのhitにつられて、 virtual pad widthが マイナスになってしまう。 (下図 layer 3)

Miss Track problem

hitしたlayerの内最もIPに近いlayerを起点に padの組み合わせを探すため、 truthの軌跡とは異なるHit(上図 layer 2)が 最もIPに近かった場合、 適切なTrackを作ることができない

truthの軌跡のHit layerがIPに最も近い場合、 不適切なHitは拾わずに、適切なTrackのみが作られる

Hit Padの組み合わせ方法

衝突点に最も近いHitのdataのあるLayerを探す

そのLayerの各Hitごとに次の操作を行う

1)padの上下端に原点から引いた直線を引く

2)各layerにおいて、1)で引いた直線の ±50 mmの範囲(薄い青色の範囲) においてpadのhitを探す

3)範囲に入ったHitのすべての 組み合わせを作る

図の場合 1×2×2=4 通り

: pad channel width

• : hit pad channel R

Kumaoka

Bs粒子の対崩壊例

GIM機構によって厳密に禁止されている崩壊例

Standard Modelで可能な崩壊例

sTGCの位置における磁場構造

Kumaoka

