

現状と展望

東京大学 理学系研究科 物理学専攻 次世代ニュートリノ科学連携研究機構 カブリ数物連携宇宙研究機構

横山 将志

第24回ICEPPシンポジウム

I6年ぶり3回目のICEPPシンポです

前回はD3のとき

Belleでシリコンバーテックス検出器を5回作ったり, CP非対称性を測ったりした

	日程	時間	講演者	<u>郑</u> 昌	購演時間
	17	17:00	川崎 雅裕	講義:Qボールと物質・反物質の起源(1)	60
				座長:堀江 圭都	J
		18:00	山本 将博	JLC用偏極電子源の開発状況	25
		18.25	渡川 和显	理研白中電子レーザー計画と低エミッタンス電子銃	25
		18.50	田山純一	D0-D0har mixing in Belle	25
		10.00	二桥 利也	Meg 実験の祖北と展望	25
		19.10	—1阆 竹」 🙂		
	18	9.00	川崎 雅裕	講義・Qボールと物質・反物質の記源(2)	60
	10	休甜			15
		10:15	諸井 建夫	講義:Particle Cosmology — Basics and Some Applications — (1)	120
				座長:野崎 光昭	ł
		17.00	中令 卡兰	TAのシュミレーション or Geante の validation study	25
		17.00	하고 古라	テレスコープアレイ計画におけるフロントエンド処理とエネルギーキャリブレーシ	25
		17.20	與于 直公 士和 — 洋	一方板用向気味相測(BESS-Palar)におけたDACシステムの関発	25
	-	17.00		用極周囲気味説がGESS-Fold/CGI/CGI/CDAG/A/Aの開発	25
		10:10	女台川 家心	REN/ATFICの1) Sphoto Gamode RF Gunを用いた天秋相末について	25
		18:40	和阿可乙	Proton Decay from Planck Scale	25
		00.00	山土主文		ļ
		22:00			40
-			安谷川 征也	N2N 美歌の現状と展望と	
	19	9:00	諸井 建夫	講義:Particle Cosmology — Basics and Some Applications — (2)	120
				座長・堀江 主都	(
		11.00	山内正則	ビス・加加 エポー ビス・加加 エポー	25
		11.00	田内 正則 左按 正其	フーパーカミナカンデにトスナダニュートリノの研究	25
		11.20	입场 正委	- スーパーカミオカン / による人メーエードリンの例え - フーパーカミナカンデにセける大限=ュートリノの組測なとび反=ュートリノの処	25 2 25
		11:50	え (京) 1011	人一八一万ミオ カン う における 太陽 ニュードウン の 観 みおよび 及ニュードウン の 5	1 25
				座長:野崎 光昭	i
		17:00	身内 賢太朗	LiFボロメータを用いた神岡地下実験室での暗黒物質探索実験	40
			関谷 洋之	暗黒物質検出のための方向感度をもった検出器の開発	40
		17:40	梅原 さおり	二重ベータ崩壊測定について	25
		18:05	勝木 厚成	暗黒物質探索について	25
		18:30	山下 雅樹	XMASS実験ーXe検出器による暗黒物質探策	25
		18:55	開田土詞	$KL \rightarrow \pi 0 \nu \nu$ 探索実験	25
		22:00	高橋仁	Study of S=-2 Nuclei with Hybrid-Emulsion Method	25
		22:25	後藤 雄二	BNL/RHIC における最初の偏極陽子衝突	25
				•	
	20	0.00	** + **	座長:石田 康明	0E
		9:00	双本 広	LHU-AILAS実験日本担当部の現住の進行状況	20
		9:25	内田 佐知子	・B→J/Ψη,J/Ψπ,J/Ψρ開碳の観測	25
		9:50	出端 岳彦	Belle AUC アッノクレイトのためのンリカエアロンエルRICHの研究開発	25
		10:15	空 削史 小主 法主	Avalanche photodiodeを用いたScintillating Fiber detectorの開発	25
		10:40	位不 石之 鈴木 隆中	OUF Runz の現状ならい成実(リ) CDF Runz の現状など(展望(2)	40
		11:05	横山将志	中性B中間子系におけるCP対称性の破れの発見	25

横山

3

ニュートリノ振動の状況(2002年)

スーパーカミオカンデ(石塚)

K2K(山本, 長谷川)

ICEPP Symposium 2002 @Hakub

まとめ	Summary
 > 2 世代振動解析 △m² = 1.6~3.6 × 10⁻³eV², 0.9<sin<sup>22θ</sin<sup> best fit (△m² = 2.5 × 10⁻³eV²,sin²2θ=1.0) > 3 世代振動解析 pure v_µ-v_τ oscillation と Consistent sin²θ₁₃<0.25 > スーパーカミオカンデによるL/Eの研究 (MC) 	 June 1999 - July 2001 data: Accumulated 5.6 x 10^19 POT FC events in SK fiducial volume (4.8 x 10^19 POT) Observed: 56 Expected with null oscillation: 80.6 +7.3 ==> a sign of neutrino oscillation !! Energy Spectrum Analysys: ==> underway (more statistics & reduce sys. error> preparing for new detector) Continue data taking in 1-2 more year.
最初の振動ビークが観測可能 Best fit parameter を仮定した場合、4年間の観測により Decoherence と Oscillation のあいだで	K2K established long baseline experiment method.
$\Delta \lambda = 0.14$ MMTC162	S. Yamamoto, Kyse and

「振動」であることの確認

大気ニュートリノの追試

長基線実験の有効性を確立

SKは, 事故の直後。2002年末にPMT半分で再開 太陽ニュートリノ: SNO+SKの最初の結果が2001年

大気ニュートリノ 太陽ニュートリノ 原子炉反ニュートリノ 大気ニュートリノ

唯一確立した New Physics

- ニュートリノ質量の起源は?
 - マヨラナ質量?
 マヨラナ粒子の存在
 - 純粋にディラック質量?

СКМ

- マヨラナ項を禁じる対称性
- 極端に小さい湯川結合
- 右巻きニュートリノの存在

クォークと大きく違う混合行列!

そもそも、世代って? (who ordered that?)

- 質量階層パターン(Δm²₃₂の符号)
 - $(\theta_{23}-\pi/4) = 0? +? -?$ (octant)
 - 3世代混合で閉じているか?

- 人工ビームで、距離、方向、エネルギーを制御可能
- •大強度ビームと、巨大な検出器が必要
- 系統誤差を抑える数々の工夫
 - 大強度陽子ビームの制御
 - π生成測定実験 (ex. NA61@CERN)
 - 前置検出器によるin situ測定

 $\Delta m^{2}_{atm} = 2.5 \times 10^{-3} eV^{2}$

L ~ 500km for E=1GeV

Thunder Bay MINOS(2005-2012) K2Kの追試 Minnesota Saint Cloud MINOS+(2013-) Plymouth - Minneapolis Wausau NOvA(2014-) sconsin • Green Bay T2Kの追試 質量階層 Madi Milwaukee Kenosha アメリカ Rockford - Chicago Naperville Des Moines

https://youtu.be/kQkS5jnr63g

SKでの予想 ve 事象数に対する系統誤差(%)

	2012	2013	2014	2016
前置検出器での フラックス×断面積	5.0	2.9	3.2	2.9
前置検出器で制限できない ニュートリノ反応	7.6	7.5	4.7	3.0
SK検出器	3.0	2 Б	2.7	2.4
終状態/二次ハドロン反応	2.3	5.5	2.5	2.5
合計	9.9	8.8	6.8	5.4

cf.実験前の設計目標:<10%

T2K-IIでの目標:~4% (→岩本講演)

FermilabのビームはI0μsの間だらだらと出るので,NOvAでは宇宙線(μ) を落とすのに苦労。最終サンプルにも5%くらい入ってる

観測事象のエネルギースペクトル

			デー 々			
		δ=0	δ=π/2	δ=-π/2		
e-like	ν, 0π	61.5	49.9	73.5	74	
	ν, Ιπ	6.01	4.87	6.92	15	
	$\overline{\mathbf{v}}$	9.04	10.04	7.93	7	
µ-like	ν	267.4	267.7	267.8	240	
	$\overline{\mathbf{v}}$	62.9	63.I	63.I	68	

(normal hierarchy, θ_{23} =45°)

- ve事象はCPが大きく破れていることを示唆
- νμ事象はθ₂₃最大混合とコンシステント

Normal hierarchy [-2.91, -0.60] rad. Inverted hierarchy [-1.54, -1.19] rad

CP保存するパラメータ (δ=0,π)は 2σ CL 信頼区間の外 ! レプトンセクターでの本格的なCP研究の幕開け

NOvA

The NOvA Detectors

Fermilabからミネソタへ 基線長 810km

Matter effectが大きい(~30%) Mass hierarchyに感度 (T2Kと合わせるとさらに改善)

T2K-NOvAのjoint analysisに向けた議論も進行中

NOvAは2018年I月に新しい結果を発表

(まだニュートリノデータのみ。反 νの結果は夏だそう)

Joint Best Fits 72 🚫 💥 A. Radovic, JETP January 2018 Full joint fit with disappearance analysis. Feldman Cousins corrections in 2D & 1D limits. All systematics, oscillation pull terms shared. Constrain θ_{13} using world average from PDG, $\sin^2 2\theta_{13} = 0.082$ **NOvA Preliminary NOvA Preliminary** 0.7 0.7 0.6 0.6 $\sin^2 \theta_{23}$ $\sin^2 \theta_{23}$ 0.5 0.5 0.4 0.4 0.3 0.3 $\square 2 \sigma \square 3 \sigma$ • Best Fit 1σ 2 σ 3 σ 1σ NH IH <u>3π</u> 2 <u>3π</u> 2 <u>π</u>2 <u>2</u>π $\frac{\pi}{2}$ π $\overline{2}\pi$ π $\boldsymbol{\delta}_{\text{CP}}$ $\boldsymbol{\delta}_{\mathsf{CP}}$

- T2KやSKの結果を確認
- CP大きそう
 Normal hierarchyぽい

NOvAは2018年1月に新しい結果を発表 (まだニュートリノデータのみ。反*ν*の結果は夏だそう)

θ₂₃は昨年は45°でないと言っていた(2.6σ)のが, 45°に... (較正・解析の変更によるもの)

大・中・小の実験で継続的に人材育成と物理成果

バックアップ

Antineutrino mode 1Re candidates

v_µ Result- Comparison To Previous Result

Our previous result*: **2.6σ**

50 🚫 💥

A. Radovic, JETP January 2018

Our rejection of maximal mixing has moved from 2.6σ to 0.8σ. This change in the character of our result comes from a few key changes which I'll break down below.

New simulation & Calibration:
 ~1.8σ

Driven by updates to energy response model. Drop to 2.3o expected due to new energy resolution. Additionally we have a <70 MeV> shift in our hadronic energy response. This energy shift would be expected to move 0.5 events out of the "dip" region. However it instead pushes 3 "dip" events past a bin boundary.

New selection and analysis: $\sim 0.5\sigma$

For combined analysis changes 5% of pseudo-experiments in a MC study had this size shift or larger. This probability is driven by a low expected overlap in background events, and to second order the addition of resolution bins.

New, 2.8x10²⁰ POT, data prefers maximal mixing.

*Feldman-cousins corrected significance.