KOTO 実験での 結晶シンチレータ両端読みだしによる カロリメータアップグレード 南條 創 (大阪大学)

New Physics Search

- ・High Energyに新物理
 - Energy Frontier \rightarrow LHC
 - Intensity Frontier
 - $\Delta E \times \Delta T \sim h$: まれ → 高エネルギー
 - ・標準モデル = background process
 - ・強い抑制
 - ・正確な予測

- FCNC process $(down \rightarrow up \rightarrow down)$
 - b \rightarrow d ex) B $\rightarrow \mu \mu$
 - b \rightarrow s ex) Bs $\rightarrow \mu \mu$
 - s \rightarrow d ex) K $\rightarrow \pi \nu \nu$
- GIM suppression
 - ・ 中間のu, c, tの寄与はキャンセル → 0 (ユニタリ) : まれ
 - ・ topの寄与が最大 (質量差) :エネルギースケール大 →比較的正確

Kaon

 $K_S \sim \left(\left| K^0 \right\rangle + \left| \overline{K^0} \right\rangle \right) / \sqrt{2}$ $K_L \sim \left(\left| K^0 \right\rangle - \left| \overline{K^0} \right\rangle \right) / \sqrt{2}$

- ・質量:0.5 GeV
- ・寿命
 - K_L 50ns 15m
 - Ks 100ps 3cm
 - K+ 10ns 4m

$K_L \rightarrow \pi^0 \nu \nu$

- Rare
- Accurate $\sim 2\%$
- CP violation
- Related process

$$Br(SM) = (3.00 \pm 0.30) \times 10^{-11}$$

Buras '15

$$\mathcal{A}(K_L) \propto \mathcal{A}(K^0) - \mathcal{A}(\overline{K_0}) \propto \operatorname{Im}(\mathcal{A}_{s \to d})$$
$$K^+ \to \pi^+ \nu \nu \qquad \mathcal{A}(K^+) \propto |\mathcal{A}_{s \to d}|$$

Indirect limit :

$$Br(K_L) < 4.4 \times Br(K^+) \rightarrow 1.5 \times 10^{-9} (90\% C.L.)$$

Measured value
 $(1.73^{+1.15}_{-1.05}) \times 10^{-10}$
Direct limit :
 $Br(K_L) < 2.6 \times 10^{-8} (00\% C.L.)^{10}$

Direct limit :

 $Br(K_L) < 2.6 \times 10^{-6} (90\% C.L.)$

New Physics Models

KOTO実験-Beam-

- 2γ +nothing \rightarrow Calorimeter + Veto detectors
- Beam constraint \rightarrow "pencil beam"

Decay Modes	Branching Fraction	
$K_L \to \pi^0 \nu \overline{\nu}$	$(2.4 \pm 0.4) \times 10^{-11}$	
$K_L \to \pi^{\pm} e^{\mp} \nu$	(40.55 ± 0.11) %	
$K_L \to \pi^{\pm} \mu^{\mp} \nu$	(27.04 ± 0.07) %	
$K_L \to 3\pi^0$	(19.52 ± 0.12) %	
$K_L \to \pi^+ \pi^- \pi^0$	(12.54 ± 0.05) %	
$K_L \to 2\pi^0$	$(8.64 \pm 0.06) \times 10^{-4}$	
$K_L \to 2\gamma$	$(5.47 \pm 0.04) \times 10^{-4}$	
$\overline{K}_L \to \pi^0 \nu \bar{\nu}$	signalbox	
	10	
	1	
50		
1000 350	00 6000 0.1 77	
Z _{vertex} (mm)		

Status

http://www.lnf.infn.it/wg/vus/content/Krare.html

• 2015 Data : Will open box before June 2018

	New
KL->2pi0	0.07±0.07
KL->pi+pi-pi0	0.18±0.05
NCC	0.13±0.07
Hadron cluster	0.26±0.08
CV-pi0	<0.14
CV-eta	0.05
KL->2gamma	0.02±0.02
KL->3pi0 fast	<0.01
Masking Ke3	<0.094
Masking K3pi0	0.17±0.12
Sum	0.88±0.18

MPPC

- ・半導体光センサ
 - ・低物質量 (0.02X⁰)
- ・シリコーン窓:UV sensitive
- ・ 6mm角 + 50µm角ピクセル
 - ・ピクセル数: 14,400
 - Gain : 1.7×10^{6}
 - Dark rate 2-6MHz

グループ読み出し

- ・ 10cm × 10cm領域 → 読み出しチャンネル数256
- ・モリエール長 ~3.5cm
 - ・ PMT読み出し:エネルギーと微細構造
 - ・ MPPC読み出し:時間差 → 深さ方向位置

10cm x 10cm group energy>50MeV

カロリメータアップグレード

読み出し: 10cm角領域→256チャンネル

Simulation

削減能力(Simulation)

カロリメータアップグレード

Realistic setup with e⁺ beam

e+ beam 200-800 MeV/c

100kW x 3 snowmass year 10⁹n_{eq}/cm²

Results with e⁺ beam

まとめと今後

- ・KOTO実験のカロリメータアップグレード
 - undoped CsI結晶
 - PMTとMPPCの両端読み出し
- 性能
 - ・時間差分解能→背景事象削減 1/10
 - 放射線損傷→影響小
- ・今後
 - ・実機へのインストール 2018年 6月-12月
 - ・新物理領域の探索

