³He比例計数管を用いた環境中性子フラックスの測定

神戸大学 粒子物理学研究室 158s113s 帝釋 稜介

1) NEWAGE実験

2) 神岡地下における中性子フラックスの測定 3) まとめ 1.NEWAGE実験 方向に感度を持つ暗黒物質直接探索実験

NEWAGE(NEw general WIMP search with an Advanced Gaseous tracker Experiment)

神岡地下実験施設LAB-Bで稼働中

- CF₄ガス 0.1気圧
- 有感領域 30.72 × 30.72 × 41 cm³
- 2次元画像飛跡検出器 μ-PIC

2.神岡地下における中性子フラックスの測定

• 暗黒物質探索実験ではWIMPと原子核との弾性散乱事象を見る

・中性子は原子核と弾性散乱し、暗黒物質事象と同じような振る舞いをする
 →中性子のエネルギーやレートを理解することが重要

 $[n cm^{-2} s^{-1}]$

		フラックス φ	熱中性子	熱以外の中性子
	*	南野氏の測定 (2004年)	
)	中性子のフラックスの先行研究	神岡地下鉱山内(2700m.w.e)	$8.26(\pm 0.58) imes 10^{-6}$	$1.15(\pm 0.12) imes 10^{-5}$
		神岡鉱山内遮蔽体中	$<4.80 \times 10^{-7} (95\%$ C.L.)	$<3.42 \times 10^{-6}$ (95.45%C.L.)
		大谷氏の測定(1994年)	
		地上(本郷キャンパス)	$1.4 imes 10^{-3}$	$1.2 imes10^{-2}$
,	³нь比例計数管で測定	神岡鉱山内(2700m.w.e)	$1.4 imes 10^{-5}$	$2.8 imes10^{-5}$

ホースペクトル情報も得る ホールギースペクトル情報も得る 熱中性子(0.5eV以下)を主にターゲットにする 高速中性子(500keV以上)も減速材(ポリエチレン)を用いればターゲットに出来る

本発表では地下実験の結果のみ

³He比例計数管

(KEK放射線科学センター所有)

- Reuter-Stokes社 モデル番号P4-1618-203
- 気体 ³He
- 気圧 10atm
- 動作電圧 1300V

³He + n
$$\rightarrow$$
 p + T

$$E_p = 573 keV$$

 $E_T = 191 keV$

中性子と³Heの反応断面積(JENDL-4.0)

熱中性子のイベントが優勢

0.5eV以下 ほぼ100%捕獲出来る

pとTはそれぞれ³Heガスをイオン化しながら運動 energy [Mel その時に生成された電子を電場でドリフトし、陽極付近の強い電場で増幅し電 流として読み出す。

[barn]

cross section

10⁵

104

23rd ICEPP Symposium

Geant4

- 放射線の粒子反応をシミュレーションするために開発
- 高エネルギー物理学の分野で幅広 く用いられている

多様な放射線の挙動を解析可能な 汎用モンテカルロ計算コード

PHITS

加速器遮蔽設計、医学物理計算などの幅広い分野で利用されている

1 検出器のジオメトリを組む
 2 中性子エネルギースペクトルを仮定 ままま
 3 中性子の方向分布(等方入射)
 4 反応数とΦの校正係数算出

エネルギースペクトルの仮定

地下

- ✓ 低エネルギー側ではボルツマン分布
- ✓ 無限な減速在中に中性子線源が一様分布、および減速在 中での吸収は少ない場合はA/E則(Aは定数)に従う

・ ジオメトリ ・ スペクトル

を変化させシミュレーションを行った

α [(n cm ⁻¹	s⁻¹)/(n s⁻¹)]	減速材なし	減速材あり
Coont/	Gordon+1/E	1.52×10^{-2}	2.72 × 10 ⁻²
Geant4	ボルツマン+1/E	9.32 × 10 ⁻³	3.30 × 10 ⁻²
DUUTC	Gordon+1/E	1.55 × 10 ⁻²	2.99 × 10 ⁻²
PHIIS	ボルツマン+1/E	9.38 × 10 ⁻³	3.88 × 10 ⁻²

反応数	減速材なし	減速材あり
T _{live} [days]	15.70	15.88
C _{partial} [counts]	1748	652
3	0.87	0.87
R [n s⁻¹]	1.47 × 10 ⁻³	5.34 × 10 ⁻⁴
シミュレーション	減速材なし	減速材あり
α [(n cm ⁻¹ s ⁻¹)/(n s ⁻¹)] _{Geant4,ボルツマン+1/E}	9.32 × 10 ⁻³	3.30 × 10 ⁻²
	<u>総フラックス</u> の _m 換算式	
	$\Phi_{\rm m} = \alpha \times R$	
測定結果	減速材なし	減速材あり
Ф_m [n cm⁻² s⁻¹] _{Geant4,ボルツマン+1/E}	1.37 × 10 -5	1.76 × 10 -5

$[n cm^{-2} s^{-1}]$

中性子フラックス	熱中性子	熱以外の中性子
本研究結果	9.48 (± 0.23 + 2.03 - 3.20) × 10 ⁻⁶	5.47 (± 0.21 $^+$ 7.30 - 5.01) × 10 ⁻⁶

誤差:(第一項)統計

(第二項)系統(Gain5%の変動、Geant4とPHITSの違い、仮定するスペクトルの違い、 減速材ありとなしからの総フラックスの違い、1/Eとの接続による変動)

単位 [n cm⁻² s⁻¹]

測定	熱中性子	熱以外の中性子
大谷氏(1994年)	1.4 × 10 ⁻⁵	2.8 × 10 ⁻⁵
南野氏(2004年)	8.26 (± 0.58) × 10⁻⁶ 統計	1.15 (± 0.12) × 10 ⁻⁵ _{統計}
本研究結果	9.48 (± 0.23 $^{+2.03}_{-3.20}$) × 10 ⁻⁶	5.47 (± 0.21 $^{+7.30}_{-5.01}$) × 10 ⁻⁶

誤差:(第一項)統計

(第二項)系統(Gain5%の変動、Geant4とPHITSの違い、仮定するスペクトルの違い、 減速材ありとなしからの総フラックスの違い、1/Eとの接続による変動)

誤差の範囲で南野氏(2004年)の先行研究と一致

神岡地下における中性子フラックスの測定

- ³He比例計数管を用いて神岡地下実験室LAB-Bで測定
- ・ 誤差の範囲内で南野氏測定結果(2004年)と一致
- 仮定するエネルギースペクトルによる影響を系統誤差に入れ評価
- 詳細な中性子エネルギースペクトルの測定には液体シンチレーターなどを用いた測定が必要であることがわかった

Back up

太陽系は銀河系内で白鳥座方向に向かって運動 暗黒物質直接探索実験とは・・・・ 白鳥座方向から多く来るように見える 暗黒物質と既知の物質との直接反応を捉える実験 ここでは WIMPと原子核の弾性散乱 暗黒物質 Weakly Interactive Massive Particle T.Hashimoto, Master thesis Kobe University (2016). 原子核 暗黒物質と弾性散乱した Dec. 4th 既知の物質を見る (min.) 60° SD, ¹⁹F, M_{D} =100 [GeV], σ =1 [pb] rate [counts/keV/kg/day] 232 km/s T.Hashimoto, Master thesis Kobe University (2016). Sun 1.8 June Jun. 2nd DM 1.6 Earth (max.) December 数パーセントの違いを捉える 従来の暗黒物質直接探索実験 0.8 0.6 ▶ 反跳原子核のエネルギーを測定 0.4 ▶ 季節によるイベント数の変化(季節変動)を捉える 0.2 2017/02/20 23rd ICEPP Symposium 'n 20 40 60 80 100 120 140 160 180 200

recoil energy [keV]

Wall-effectで573keVのピークが見えない理由

測定から得られるエネルギーヒストグラム

³He内を通る仮定で弾性散乱している可能性

Fの中性子スペクトル

Radioactive background in a cryogenic dark matter experiment V. Tomasello *, M. Robinson, V.A. Kudryavtsev Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK

今後同じシミュレーションを行い、仮定しているスペクトルの妥当性を評価したい

- 本研究は誤差の範囲で南野氏(2004年)と一致する結果が得られた
- 系統誤差として ボルツマン分布と1/Eとの接続点の影響 仮定するスペクトル(Gordon+1/E or ボルツマン+1/E)の影響 ポリエチレン中での熱化の影響(αの見積もり) が大きく関わることがわかった
- さらに詳細なエネルギースペクトルの情報を取得するためには、中性子のエネルギーを直接測定出来る液体シンチレーターなどを用いた測定を行う必要がある

早稲田大学田中氏スライド(2016/04/21)@理化学研究所

	熱中性子 (ポリエチシールド無し)	熱以外の中性子 (ポリエチシールド有り)
	T _{live} 1.54 [days]	T _{live} 32.29 [days]
地上	C _{partial} 14251 [counts]	C _{partial} 110617 [counts]
(神戸大)	ε 0.87	ε 0.85
	R 1.23 × 10 ⁻¹ [n/s]	R 4.67 × 10 ⁻² [n/s]
	T _{live} 15.70 [days]	T _{live} 15.88 [days]
地下	C _{partial} 1748 [counts]	C _{partial} 652 [counts]
(神岡LAB-B)	ε 0.87	ε 0.87
	R 1.47 × 10 ⁻³ [n/s]	R 5.34 × 10 ⁻⁴ [n/s]

Geant4

- 地上での先行研究結果を参考にした Gordon+1/E
- 理想的な場合を仮定した ボルツマン分布+1/E

スペクトル形状	$f_{ m th}$	$f_{ m non_th}$
スペクトル (Gordon $+\frac{1}{E}$)	0.366	0.634
スペクトル(ボルツマン + $rac{1}{E}$)	0.690	0.310

2017/02/20

23rd ICEPP Symposium

中性子方向分布の仮定

半径rの球殻表面から 内側方向にcosθで重み付 けしてN発照射 この時球殻内部で得られ るフラックスΦは次の式で 与えられる

 $\frac{N}{\pi \times r^2}$ Φ_{s}

検出器の外の球殻表面から 内側cosθで重み付けして照射

ランダム方向の中性子を再現

単位 [n cm⁻² s⁻¹]

場所	熱中性子	熱以外の中性子	
地上(本郷キャンパス)	1.4×10^{-3}	1.2×10^{-2}	
神岡鉱山内	1.4×10^{-5}	2.8 × 10 ⁻⁵	
南野氏(2004年)			
場所	熱中性子	熱以外の中性子	
神岡鉱山内	8.26 (± 0.58) × 10 ⁻⁶ _{納計}	1.15 (± 0.12) × 10 ⁻⁵	
	熱中性子	熱以外の中性子	
地上(神戸大)	7.21 ($\pm 0.06 + 0.55 - 0.55$) × 10 ⁻⁴	7.70 ($\pm 0.02 + 9.81 - 4.33$) × 10 ⁻⁴	
神岡地下実験施設LAB-B	9.48 (± 0.23 + 2.03) × 10 ⁻⁶	5.47 (± 0.21 + 7.30 - 5.01) × 10 ⁻⁶	

誤差:統計

大谷氏(1994年)

系統(地上:Gain5%の変動、Geant4とPHITSの違い、仮定するスペクトルの違い、減速材ありとなしからの総フラックスの違い)

(地下:Gain5%の変動、Geant4とPHITSの違い、仮定するスペクトルの違い、減速材ありとなしからの総フラックスの違い、1/Eとの接続による変動) 2017/02/20 23rd ICEPP Symposium 30

中性子エネルギースペクトルへの換算

