東北大学サイクロトロン・ラジオアイソトープセンター

測定器研究部 内山愛子

EDM: Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率

 $|d_e^{\rm SM}| < 10^{-38} \, e {\rm cm}$

M. Pospelov and A. Ritz, Ann. Phys., 318 119, (2005)

標準模型を超えた物理モデルの検証を行う

超対称性理論:

伝搬により発現

統計性の異なる粒子の

標準模型より1010倍

大きい値をとり得る

超対称性

e

EDM: Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率

標準模型を超えた物理モデルの検証を行う

Fr原子を用いた電子EDM探索

1	2	3
Н		
Li	Be	
Na	Mg	
K	Са	So
Rb	Sr	Y
Cs	Ba	57~7 ランタノ
Fr	Ra	89~1 アクチノ

Fr原子を用いた電子EDM探索

 $h\nu_{+} = -2m_{F}g_{F}\mu_{B}B_{+} - 2m_{F}d_{Fr}E_{+}$ $h\nu_{+} = -2m_{F}g_{F}\mu_{B}B_{+} - 2m_{F}d_{Fr}E_{+}$ $m_{F}: 磁気量子数, \mu_{B}: \pi - \mathcal{P} \overline{\mathrm{W}}\mathcal{F}, d_{Fr}: Fr原 \mathcal{F} EDM, B_{+}, B_{-}: \overline{\mathrm{W}}\mathcal{G}, E_{+}, E_{-}: \overline{\mathrm{W}}\mathcal{G}$

$$h(\nu_{+} - \nu_{-}) = -2m_{F}g_{F}\mu_{B}(B_{+} - B_{-}) - 2m_{F}d_{Fr}(E_{+} + E_{-})$$

$$d_{\rm Fr} = -\frac{h(\nu_+ - \nu_-) + 2m_F g_F \mu_B (B_+ - B_-)}{2m_F (E_+ + E_-)}$$

第23回ICEPPシンポジウム

2017/2/19

Fr原子を用いた電子EDM探索

- 長い相互作用時間 ~1 sec
- $d_{\rm Fr} = -\frac{h(\nu_+ \nu_-) + 2m_F g_F \mu_B (B_+ B_-)}{2m_F (E_+ + E_-)} \cdot 高精度周波数測定 \sim 0.1 \, \text{mHz}$ · 高電場印加 ~ 100 kV/cm
 - ・ 高電場印加 ~ 100 kV/cm
 - 磁場の精密測定 ~ 10 fT

光格子中でのEDM測定

2017/2/19

光格子中での原子のエネルギーシフト

 $\Delta \epsilon =$

- $-\frac{1}{4} \alpha_{\rm S}^{\rm AC} E_{\omega}^{2}$: AC scalar stark shift (= U)
- $-\frac{1}{4}\alpha_{\rm V}^{\rm AC}\frac{m_F}{2J}E_{\omega}^2(i\epsilon^*\times\epsilon)\cdot\mathbf{e}: \text{AC vector stark shift}$

$$-\frac{1}{4}\alpha_{\mathrm{T}}^{\mathrm{AC}}\frac{3m_{F}^{2}-J(J+1)}{J(2J-1)}\cdot\frac{3|\varepsilon_{Z}|-1}{2}E_{\omega}^{2}: \mathrm{AC} \text{ tensor stark shift}$$

M. Auzinsh et al., Optically Polarized Atoms (2009)

α_S^{AC}, α_V^{AC}, α_T^{AC}: 分極率, E_ω: 光の電場振幅, U: ポテンシャル深さ, J: 電子の全角運動量, m_F: 磁気量子数
 ϵ: 偏光ベクトル, e: 量子化軸方向の単位ベクトル
 光が円偏光のときのみ生じる

 $h\nu = \Delta \epsilon_1(F_1, m_{F_1}) - \Delta \epsilon_2(F_1, -m_{F_1}) = -2m_F \alpha_{\text{eff}} U(i\epsilon^* \times \epsilon) \cdot \mathbf{e}$

 $= -2m_F g_F \mu_B B - 2m_F \alpha_{\rm eff} U(i\epsilon^* \times \epsilon) \cdot \mathbf{e} - 2m_F d_{\rm Fr} E$

静磁場 光による有効磁場 EDM

2017/2/19

⁸⁵Rbと⁸⁷Rbを用いた光格子共存磁力計

$$hv = \Delta\epsilon_{1}(F_{1}, m_{F_{1}}) - \Delta\epsilon_{2}(F_{1}, -m_{F_{1}})$$

$$= -2m_{F}g_{F}\mu_{B}B$$

$$-2m_{F}\alpha_{eff}U(i\epsilon^{*} \times \epsilon) \cdot e$$

$$-2m_{F}d_{Fr}E$$

$$hv_{Fr} = -2m_{Fr}g_{Fr}\mu_{B}B - 2m_{Fr}\alpha_{eff}(Fr) U(i\epsilon^{*} \times \epsilon) \cdot e - 2m_{Fr}d_{Fr}E$$

$$hv_{85} = -2m_{85}g_{85}\mu_{B}B - 2m_{85}\alpha'_{eff}(^{85}\text{Rb}) U(i\epsilon^{*} \times \epsilon) \cdot e - 2m_{85}d_{85}E$$

$$hv_{87} = -2m_{87}g_{87}\mu_{B}B - 2m_{87}\alpha'_{eff}(^{87}\text{Rb}) U(i\epsilon^{*} \times \epsilon) \cdot e - 2m_{87}d_{87}E$$

$$hv_{87} = -2m_{87}g_{87}\mu_{B}B - 2m_{87}\alpha'_{eff}(^{87}\text{Rb}) U(i\epsilon^{*} \times \epsilon) \cdot e - 2m_{87}d_{87}E$$

静磁場 と 光による有効磁場 を同時に測定

⁸⁵Rbと⁸⁷Rbを用いた光格子共存磁力計

2017/2/19

⁸⁵Rbと⁸⁷Rbを用いた光格子共存磁力計

修士論文 坂本幸祐 (2017) 東北大学

2017/2/19

磁気光学トラップ(MOT)

ドップラー冷却

11

磁場による復元カ

⁸⁵Rbと⁸⁷Rbの同時MOT

⁸⁵Rbと⁸⁷Rbの同時MOT

⁸⁵Rbと⁸⁷Rbの同時MOT

⁸⁵Rbと⁸⁷Rbの同時MOTに成功!

14

今後の課題 トラップ個数を増やす 個数の安定化 偏光勾配冷却

まとめ

電子EDMをFr原子を用いて探索することを計画している 光格子中でのEDM探索で問題となるベクトル光シフトを測定する ために⁸⁵Rbと⁸⁷Rbを用いた光格子共存磁力計の開発を進めている 今回⁸⁵Rbと⁸⁷Rbの同時MOTに成功した