

COMET Phase-I における 放射線環境の評価とその対策

中沢 遊(大阪大学) 2017.02.22 23rd ICEPP Symposium

イントロダクション

- ・ ミューオン電子転換過程
- · COMET Phase-I 概要
- ・ 読み出しボード (RECBE)

◎ 中性子対策

- ・ 中性子による影響
- · 対策

◎ 中性子照射試験

・ セットアップ

· 測定結果

◎ まとめ

イントロダクション

ミューオン電子転換過程の発見は新物理を示唆する

COMET Phase-I

目的:AI原子中でのミューオン電子転換過程探索

- · @J-PARC (2018/2019)
- -15 ・150日間の測定で実験感度(S.E.S) ~ 3 × 10 (先行実験の100倍)
- 検出器: Cylindrical Drift Chamber (CDC) & ストロー飛跡検出器
- 信号:~105 MeV/c の単一エネルギーを持った電子
- 背景事象: Decay-In-Orbit (DIO) 電子 & ビーム由来の事象
- **CDC読み出しボード:**Belle-IIで開発されたRECBE

Cylindrical Drift Chamber

運動量分解能: < 200 keV/c for 105 MeV electrons

· 反跳エネルギーにより100MeV/c程度の運動量を持つDIO電子を信号と区別するため

封入ガス: ヘリウムベースの混合ガス

· CDC内部での多重散乱の影響を抑えるための低物質量化

読み出し回路: RECBE x 104 モジュール

· 実機の量産及び性能評価が完了 @IHEP (中国)

評価項目:ASDの性能、時間分解能、ノイズレベル等

Cylindrical Drift Chamber

宇宙線による性能試験中

(参照:Sam、沖中)

1st stage: 2016年8月

RECBE

ASD (Amp Shaper Discriminator)

• 8ch/chip

ADC (AD9212)

- 8ch/chip
- 2 Vp-p を10 bit分解能でデジタル化
- 30 Msps

FPGA (Virtex-5 XC5VLX155T) 基本クロック: 120 MHz

RJ-45 (LVDS,JTAG)

LVDS : 共通動作クロック (40MHz) トリガー信号の入力 Busy信号の出力 JTAG : ファームウェアのダウンロード

COMET Phase-I における中性子流量

要求する中性子耐性 (150日間) ~10¹² neutrons/cm²

- ・過去の試験から永久的なハード損傷は 確認されていない.
- 修復可能なファームウェア損傷が多く 発見されている.

RECBEの位置での中性子流量 (PHITS)

Neutron Energy [Mev]	Neutron Flux [n/cm ² /sec]
En < 0.1	5.89 × 104
0.1 < En < 5	2.95 × 10 ⁴
5 < En < 10	8.03 × 10 ²
En > 10	1.36 × 10 ³

23rd ICEPP Symposium (2017.02.22)

中性子対策

- 中性子によるファームウェアの損傷: Single Event Upset (SEU)
 - ・中性子と半導体原子との核反応による荷電粒子の生成
 - · 荷電粒子のドリフトから生成される電子正孔対による論理反転
 - ・複数同時発生したSEU: Multi Bit Errors (MBE)
 - ・SEUのおもな発生場所

Configuration RAM:回路構成を決定するRAM. **Block RAM**:一時的にデータを保管するRAM.

- ◎ 自動修復システム
 - "**検査ビット**"をデータに追加
 - 検査ビットとデータの関係性からエラーを検出
 - · UnRecoverable Error (URE):修復不可能なエラー

11

- \cdot MBE
- ・自動修復システムの破損
- ・通信システムの破損など...

Ref : Cosmic rays damage automotive electronics http://www.embedded.com/print/4011077

22nd ICEPP Symposium (2016)

SEU Controller: Xilinx社によるCRAM用のエラー修復マクロ(使用していない領域も見てしまう) **Triple Modular Redundancy (TMR)**: モジュールの三重化と多数決回路によるエラー対策

BRAM用自動修復機能:ECC

- Error Correction Code (ECC)
- Xilinx社のIP Coreのオプション
- ◎ ハミングコードを使ったエラー修復
- ◎ SEU -> 修正可
- ◎ MBE -> 修正不可
- 使用するBRAMの容量が大きい場合 は未対応
 - RAWやPROCに含まれるSiTCPへの接
 続部分のバッファ
 - ・その他全てのバッファにECCを実装

RECBEのファームウェア構成

ECCのオプションを持たないバッファでのエラーは修復も検出もできない

TMRを実装することでこの問題を解決したい

簡易 Triple Modular Redundancy

23rd ICEPP Symposium (2017.02.22)

中沢 遊

中性子照射試験

セットアップ (2016年7月 & 2017年1月)

TANDEM 加速器 @神戸大学 ビーム:~3 MeV 重陽子 標的:Be (*ϕ* 20 mm) 中性子流量: 1.6×10^6 neutrons/cm² (標的からの距離:10 cm) (ビーム電流:1uA)

17

セットアップ (2016年7月 & 2017年1月)

Radiation area

(*) UDP通信によりSEUやMBEのデータを取得(*) データロガーを用いてビーム電流のデータを取得

セットアップ (2016年7月 & 2017年1月)

新	しい	結果	Run1:	2016年	7月、 R	un2 : 20	17年1月
Dup	距離	Angle	Noutrop	CRAM			
nun	[mm]	[°]	Neution	SEU	URE	Ns/SEU	Ns/URE
1	35	180	1.2×10 ¹²	8880	25	1.4×10 ⁸	4.8×10 ¹⁰
2	24	180	6.2×10 ¹¹	44537	225	2.2×10 ⁸	4.4×10 ¹⁰
過去の結果							
距離 Angle Na		Neutron	CRAM				
nun	[mm]	[°]	Neution	SEU	URE	Ns/SEU	Ns/URE
1	24	180	1.4×10 ¹²	66039	233	2.1×10 ⁸	6.0×10 ¹⁰
2	24	0	1.3×10 ¹²	45798	166	2.8×10 ⁸	7.8×10 ¹⁰
3	24	180	4.1×10 ¹²	20221	60	2.0×10 ⁸	6.8×10 ¹⁰
4	24	180	5.3×10 ¹²	16965	53	3.1×10 ⁸	1.0×10 ¹¹
5	24	180	6.5×10 ¹²	22930	76	2.8×10 ⁸	8.5×10 ¹⁰
6	35	180	1.1×10 ¹³	56039	163	1.9×10 ⁸	6.5×10 ¹⁰
7	58	0	3.7×10 ¹²	12387	27	3.0×10 ⁸	1.4×10 ¹¹
8	58	0	2.0×10 ¹²	7154	18	2.8×10 ⁸	1.1×10 ¹¹
9	24	0	2.1×10 ¹²	7743	22	2.7×10 ⁸	9.6×10 ¹⁰
10	24	0	8.9×10 ¹²	32125	99	2.8×10 ⁸	9.0×10 ¹⁰
11	24	0	4.0×10 ¹²	14168	36	2.8×10 ⁸	1.1×10 ¹¹

23rd ICEPP Symposium (2017.02.22)

測定結果:SEU、URE発生頻

- SEUやUREの発生頻度がオーダでこれまでの試験と 一致していることを確認できた
- エラー発生頻度と中性子の入射角との関係
 - データにばらつきがあるため現状は全データの平均値で評価

	Ave. of error rate [neutron/error/XC5VLX155T
CRAM SEU	2.5 × 10 ⁸
CRAM URE	8.6 × 10 ¹⁰

COMET Phase-IにおけるUREの見積もり URE発生頻度: 444 sec/URE/104RECBEs

ここまでの結論

- · UREが発生する度にファームウェアの再ダウンロードが必要
 - · COMET Phase-Iでは444秒に1回程度

問題点

· CRAMにエラーがない時でも波形データ内のエラーを発見 -> 次頁

波形データからのエラー探し

測定結果:異常な波形 Preliminar

	7	7ァームウェブ	7		エラーイベント数	平均中性子流量 [n/sec/cm ²]	エラー率 [%] (COMET換算)
Run	SEU Controller	ECC	TMR	全イベント数			
6 (過去)	\bigcirc	×	×	5167117	313131	1.2×10^{7}	0.046
1	\bigcirc	\bigcirc	×	372831	22507	1.9 × 10 ⁷	0.029
2	\bigcirc	\bigcirc	\bigcirc	5340923	26161	2.8×10^{7}	0.002

(*) COMET換算では本実験の中性子流量を元にした

- 成果
 - エラー対策機能を追加していくことで、エラー率を削減できた

· COMET Phase-I 換算で0.002%

- 課題
 - ・エラーイベントを完全に削除できたわけではない
 - エラーイベントのタグ付け
 - ·現状で検出されないエラーの検出方法の開発
 - SEU Controller、ECC、TMR全てを実装するとBRAMの使用率が100%
 - ・部分的なTMRの構造に変更

・エラーイベ: 現状で検 ・ SEU Contr

23rd ICEPP Symposium (2017.02.22)

まとめ

COMET Phase-I

- AI原子中でのミューオン電子転換過程をS.E.S. 3 × 10 で探索 (2019年)
- ◎ 高い運動量分解能を要求する飛跡検出器: Cylindrical Drift Chamber
- ◎ Belle-IIで開発されたCDC用の読み出しボード:104 RECBEs

読み出しボードの中性子によるエラーの評価

- SEU Controller (CRAM)とECC (BRAM)、TMR (BRAM)を実装したファームウェアの中性子照射試験
 - · CRAMのエラー率はこれまでの試験結果とオーダで一致
- COMET Phase-IにおけるURE発生頻度の見積もり
 - · URE発生頻度: 444 sec/URE/104boards (~7.4 min)
- 機能を追加していくことによるエラー発生頻度の削減
 - ・エラー率: 0.002% (COMET Phase-I 換算)
- ◎ 課題
 - エラーイベントを完全に削除できたわけではない
 現状で検出されないエラーの検出方法の開発...
 - SEU Controller、ECC、TMR全てを実装するとBRAMの使用率が100%
 効果的な部分にのみTMRを実装

	Ave. error rate n/error/XC5VLX155T
CRAM SEU	2.5 × 10 ⁸
CRAM URE	8.6 × 10 ¹⁰

23rd ICEPP Symposium (2017.02.19 - 22) ご静聴ありがとうございました.

2015.03.30