

J-PARC KOTO実験の 2015年度物理ラン解析の現状と展望

上路 市訓 (京都大学) @ 23rd ICEPP Symposium 2017年2月19日

K_L → π⁰√v 探索実験

 direct CP violation
 標準模型 分岐比 3.0 x 10⁻¹¹
 理論による不定性小: ~2%

大強度陽子加速器施設J-PARC(茨城県東海村)

2017/2/19

8

2015年ランの解析状況

2015年ランの解析状況

2015年ランの解析状況

ビーム中荷電粒子検出器のインストール

検出器の低レート化の取り組み

ビーム中荷電粒子検出器のアップグレード

1次ビームの寄与の削減

1次ビームの寄与の削減

1次ビームの寄与の削減

2017/2/19

Veto Window 幅の削減に向けて

細いwindow では veto できない

<u>重複波形をうまく分離する波形解析手法が必要</u>

課題1:重複波形による不感率の増大

細いwindow では veto できない

重複波形をうまく分離する波形解析手法が必要

まとめ・今後の展望

- KOTO実験は2015年に最初の物理ランの20倍の
 データを取得し解析が進行中
- 新物理が期待される感度の入口に到達する見込み
- 新たな挑戦として信号 acceptance を積極的に改善 する study を開始
 - ⇒ 検出器低レート化・Veto Window 最小化で 低ロス・高感度化の実現を目指す!!

<u>KOTO実験の今後の展望</u>

 ☆ より詳細な BG study → open box に向けて鋭意解析中!
 ☆ より強力な波形解析手法を用いた物理解析が本格始動!
 ☆ acceptance 改善&ビーム強度増強でさらなる高統計を実現し 新物理発見が期待される感度の探索を継続!
 [KOTO実験のさらなる展望については次の講演(塩見)で]

2015年4・5月ランエンド KOTO実験コンテナにて

Thank You

Don't Hill process.

"Tros" in koto-c use south entr

Status.

But let be Neve