Studies of Cylindrical Drift Chamber for COMET Phase-I

23rd ICEPP

22th Feb, 2017

Outline

Introduction

- Studies related to CDC
- Software studies Track reconstruction

• Future prospect

• Summary

COMET Physics motivation

<u> Physics — charged Lepton Flavour Violation</u>

Signal:

23rd ICEPP

 μ^{-} + Al \rightarrow e⁻ + Al (μ -e conversion in Al)

- $E_e = m_{\mu} B_{\mu} E_{recoil}$
 - With AI target —> 105MeV Mono-enegetic

Background:

 μ + Al \rightarrow e⁻ + ν_{μ} + $\overline{\nu_{e}}$ + Al (Decay-In-Orbit)

μ - e conversion

R < O(10⁻¹⁵) Simulation studies

22th Feb, 2017

COMET

COMET Phase-

- **1. Protons hit target**
- 2. Pions are captured
- 3. Pions decay to muons
- 4. Muons stopped in Al
- **5. Conversion happens (Hopefully)**
- 6. Detect signal electron

Cylindrical Detector (CyDet) system

COMET Phase-

- How can we detect the rare events ?!
- Ans: We have got lots of muons ! 1.2 x 10⁹
- stopping muons/second
- <u>What can survive in some such a high intensity of muons?</u>
- Ans: No, but we can avoid it!
- **Drift chamber in COMET**
- We need to have :
- -> Good performance
- -> Good resolution
- -> Good tracking algorithm

COMET Phase-

- <u>How can we detect the rare events ?!</u> Ans: We have got lots of muons ! 1.2 x 10⁹ stopping muons/second What can survive in some such a high intensity of <u>muons?</u>
- Ans: No, but we can avoid it!
- **Drift chamber in COMET**
- We need to have :
- -> Good performance
- -> Good resolution
- -> Good tracking algorithm

CyDet – Cylindrical Drift Chamber (CDC)

Layout of CyDet

CDC has been constructed successfully in 2016

- Radius of CDC : Roughly 496 mm to 835 mm
- Helium based gas mixture (Isobutane, Ethane or Methane)
- All stereo layer with alternating stereo angle for each layer
- Sense wire : $\phi 25 \mu m$ (Au-W) && field wire : $\phi 126 \mu m$ (Al)
- Number of Layer : 20 (sensitive layers + 2 guard layers)
- Cell : about (16 x 16) mm²
- Readout System : 104 RECBE Boards (one side)

23rd ICEPP

22th Feb, 2017

Performance of CDC Cosmic ray tests

- Cosmic ray test @ KEK Fuji building since last August
- Gas mixture : He—iC₄H₁₀(90/10) @ 1850V
- Tracks has been observed
- Position Resolution : >150µm (middle)
- Details of independent studies of CRT analysis will be presented by K. Okinka (next next talk)

Gas gain studies of CDC

- The gas gain drops when the high voltage decreases.
- Gas gain is independent on drift distance

HighVoltage[V]	# events	Gas gain
1850	24915	~5 . 5x10 ⁴
1800	24197	~3 . 0x10 ⁴
1750	55726	~1.8x10 ⁴
1700	24914	~1.3x10 ⁴

KLOE paper at 1850V gas gain: [1]: (6.9 +- 0.7)10⁴

IHEP Joint Meeting 2016 T.S Wong

19th Dec, 2016

Progress of other related studies of CDC

- Tension measurement of COMET CDC
 - 1st Tension measurement During wire stringing (May-Nov, 2016)
 - 2nd Tension measurement Before installation of inner wall (Feb,2016)
 - Within safety region
- Leak tests of COMET CDC
 - Below safety level Almost every week manually by gas monitor
- Ageing test of wires in COMET CDC (Still at preparation stage)
 - · Details can be seen at Y. Nakamura's talk
- Radiation tests of RECBE readout board for CDC and CTH
 - Gamma ray and neutron tests (Tested with prototype boards)
 - Details can be seen at Y. Nakazawa's talk.
- Software studies
 - CDC Calibration framework (In progress)
 - Track reconstruction (From next page)

Tracking procedure in COMET

- 1. Geant4 based MC simulation at production target (ICEDUST):
 - Signal track + beam
 simulation + hit merging (10⁴
 bunches)
 Detector response: x-t
 relation by Garfield simulation
 and a resolution assumption of

200 μm

23rd ICEPP

22th Feb, 2017

Tracking procedure in COMET Phase-

2-3. Track Finding Python based standalone program

- Machine learning Gradient Boosted Decision Tree (GBDT) classifiers —> weight each hit
- Weight each hit again according to the tracks found by hough transform
- Gives initial value for track fitting
- 4. Track fitting

GenFit-2.0 based standalone

<u>program</u>

- Kalman filter
- RANdom SAmple Consensus (RANSAC) —> remove noise
- Single turn and multiple turns

Track Finding – Hit selection

Track finding in COMET provides us a very clean event for track fitting 99 % of background can be rejected while keeping 99% of the signals.

Very important feature

Track Fitting – RANSAC

Signal Background Fitting result

22th Feb, 2017

RANdom SAmpling Consensus (RANSAC)

- 1. Take 3 points from the selected hits
- 2. Make circles in both odd and even layers
- 3. Find out the best circle!
- 4. Remove the point for GenFit

Track Fitting – quality cut

<u>NL5</u> : To ensure enough hits and z position information, tracks must reach 5th sense layer

<u>NFit</u> : At least one whole turn in CDC should be fitted successfully

NDF30 : To ensure the reliability of fitting, degree of freedom > 30

 $\underline{X^2}$: To ensure the reconstruction quality, reduced $X^2 \le 2$

<u>CL3</u> : To suppress the tail, at least 3 consecutive hit layers at both entrance and exit of the CDC is needed

<u>Dpz20</u>: For 2-turn-fit tracks, the rescontruction of momentum p_z can be controlled by requiring Dp_z smaller than 200MeV/c

Event display in CDC

23rd ICEPP

Track fitting : Acceptance of signal tracks

- Geometrical acceptance is different for multiple turn and single turn as shown below.
- Combining with quality cuts for two cases separately, the total efficiency is estimated as 18%.

	Single- turn	Multi- turn	Total
Geometrical	0.16	0.1	0.26
Quality Cuts	0.71	0.73	
Total	0.11	0.072	0.18

Track Fitting in COMET

With all quality cuts being applied, the momentum resolution achieved the COMET requirement.

The core gaussian of total momentum resolution at high momentum side and tail part of the gaussian are 195 keV/c and 226 keV/c, respectively.

None Gaussian tail is also studied with high static size sample

Future prospect

- 1. Upgrade of Cosmic ray test of CDC with integration of setup for COMET Phase-I, including the detector solenoid.
- **2. Ageing tests for CDC and Radiation tests for readout boards.**
- 3. Track finding, offline tracking should be studied with more noise. In the mean time, trigger rate in COMET is very high, advanced online track finding is now being developed for selecting events.
- 4. Track fitting with more realistic samples should be carried out for estimating the momentum resolution.
- 5. Calibration of CDC (Wire, x-t relation, momentum)

- **1. COMET CDC has been introduced**
- 2. Some studies in COMET are shown
- **3. Track procedure in CDC for COMET Phase-I is realised**
- 4. Track finding and track fitting in COMET are introduced

Acknowledge

The studies of CDC are contributed by many collaborators in COMET experiment. Thank you for all the figures and results.

Back up

Sensitivity and DIO BG #/hits>=34

30µmΦ(sense)/126µmΦ(field)

He:_iC₄H₁₀(90:10)

He:_iC₄H₁₀(90:10) 30µmΦ(sense)/80µmΦ(field)

92%→94%

92%→93% Signal acceptance and DIO BG (BR=3 × 10⁻¹⁵) MeV/c MeV/c Signal Acceptance Signal Acceptance **DIO Contamination DIO Contamination** 106.0 106.0 1.0% Contamination 1.0% Contamination 94% Acceptance 93% Acceptance 100 200 103.5MeV/c Threshold 103.5MeV/c Threshold Ē 0.1 Ē 0.8 ş 0. 0.6

 $He:C_2H_6(50:50)$ 30µmΦ(sense)/126µmΦ(field)

90%→**92%**

Hideyuki Sakamoto

Summary

Momentum resolutions and sensitivity checked

- Genfit2/DAF(w/reference track)
- Closest approach only from 1st-turn track (ideal case)
- Statistics: 20M
- Cuts

Geom.: CDC Hit && Indirect Hit@TriggerCounter

Tracking : ndf >=30 && Max_LayerNo>=6 && chi2/ndf<2 && |res_r| < 0.08 cm

Gas	Wire	σ _{core} @dbl-gaus	σ _{core} @quad-gaus	Sensitivity*
He:iC4H10 (90:10)	30µmΦ(sense)/ 80µmΦ(field)	160 keV/c	130 keV/c	92%
He:iC ₄ H ₁₀ (90:10)	30µmΦ(sense)/ 126µmΦ(field)	180 keV/c	140 keV/c	92%
He:C ₂ H ₆ (50:50)	30µmΦ(sense)/ 126µmΦ(field)	220 keV/c	170 keV/c	90%

*momentum-window: 103.6-106.0 MeV/c

Tracking for Multi-turn tracks

- Tracks of small pz have multiple turns in CDC.
- It makes neighboring hits or pile-up hits.
- In tracking (Kalman-filter), all hits should be assigned in correct order.
- Due to neighboring hits, it's difficult for track finding to separate hits.
- First trial method was implemented/tested.
 - "Divide" sequential hits in same layer, odd/even, first/last 90 deg turn.
 - Make ~50 different sets of hit candidates.
 - Fit for each set and keep if fit result is "good" (NDF>20).
 - Using remaining hits, repeat this procedure by 3 times at most.
 - Choose 1st and 2nd maximum momentum tracks and compare each pz.
 - If difference of pz is smaller than 20 MeV/c, finish.

Boosted decision tree

Figure 13.59: A decision tree, where the features are labelled as $\{x_i, x_j, x_k\}$. The first cut is on x_i at value $x_i = c_1$. This cut creates two daughter nodes, the first of which is cut at $x_j = c_2$, while the second is cut on $x_j = c_3$. This process is continued until some stopping criteria is reached. The leaf nodes are labelled as background, B, or signal, S.

COMET- Detector Solenoid

How does drift chamber work?

Different types of wire-chamber

- 1. Stereo type
- 2. Axial type
- 3. Mix of both type

- **1.** Helium-based gas mixture is inside the chamber
- 2. Electrons drift to anode wire.
- 3. Avalanche occurs to induce current on anode wire.
- 4. Gas multiplication occurs due to strong electric field

RECBE COMET is based on design of Belle-II

23rd ICEPP

Momentum resolution and spatial resolution of CDC

$$(\frac{\sigma_{P_t}}{P_t})^2 = (aP_t)^2 + (b)^2$$

B: Magnetic field strength
σ: Position resolution
N: Number of measurement points
Pt: Transverse momentum
b: Multiple scattering

 $a = \frac{\sigma}{0.3BL^2} \sqrt{\frac{720}{N+5}}$ Spatial resolution

 Comparing σ=200 and 300µm, estimated momentum resolution change only 1%
 Assuming X₀ = 507 m, N = 70 , L=1m, P_t=103MeV/*c* and B is uniform at 1T

 Estimation shows that 300µm is acceptable

[1] reference from PDG

Rough estimation of σ and σ_{Pt}

$$(\frac{\sigma_{P_t}}{P_t})^2 = (aP_t)^2 + (b)^2$$

Assuming X0 = 507 m, N = 70, L=1 and Pt=103MeV B is uniform at 1T

- He—iC₄H₁₀(90/10)
 215+-14µm
- Comparing 200 and 300um
- •Estimated momentum resolution change only 1% and at 190 keV/c

22th Feb, 2017

Still have to confirm the spatial resolution

How to measure spatial resolution ?

23rd ICEPP

- Measured Time or drift time -> DAQ
- **Drift distance (R**_{data}) = drift velocity x drift time
- **Error of measurement of Rdata**

Uncertainty (σ_x) is due to

- **1. Primary ions and diffusion**
- **2. Electronics**

Cylindrical Drift Chamber

- 20 sensitive layers with alternating stereo angles of +- 4 degrees
 - Stereo wire to recover Z information
- Sense wires: Gold plated tungsten 25 μm
 Field wires: Aluminium 126 μm

22th Feb, 2017

32

Signal and background

Momentum resolution: 200 keV/c

$$(\frac{\sigma_{Pt}}{Pt})^2 = (aPt)^2 + (b)^2$$

$$a = \frac{\sigma}{0.3BL^2} \sqrt{\frac{720}{N+5}}$$

 $b = \frac{0.054}{LB} \sqrt{\frac{L}{X_0}} \left[1 + 0.038 ln \frac{L}{X_0} \right]$ B: Magnetic field streng L: Size of the chamber σ : Position resolution

[1] reference from PDG

- B: Magnetic field strength
- σ: Position resolution
 - N: Number of measurement points
 - X0: Radiation length in gas volume
 - Pt: Transverse momentum

Curved tracks

In 1T magnetic field, straight line fitting approximation

- It consist of straight and curved tracks
- High energy particle are selected by X²

$\sigma_p vs X_0$ for 30µm and 25µm

Rough estimation of σ_p

Accuracy on momentum measurement

$$\left(\frac{\sigma_{Pt}}{Pt}\right)^{2} = (aPt)^{2} + b^{2}$$

$$a = \frac{\sigma_{r\phi}}{0.3BL^{2}} \sqrt{\frac{720}{N+5}} \qquad b = \frac{0.054}{LB} \sqrt{\frac{L}{X_{0}}} \left[1 + 0.038 \ln \frac{L}{X_{0}}\right]$$
Spacial resolution

$$Multiple scattering$$

$$B : Magnetic field strength (Tesla)$$

$$L : Measurement lever ar (m) m (Size of chamber)$$

$$\sigma_{r\phi}: Measurement error for each point (m)$$

$$N : Number of measurement points$$

$$X_{0}: Radiation length in gas volume (m) (material)$$

$$Pt : Transverse momentum (GeV/c)$$
Slide from Prof. Uno (Bellell CDC, KEK)

The multiple scattering term is dominant for 100MeV/c electrons in the COMET-CDC.