COMET実験における

オン捕獲ソレノイドの開発 ホ州大学工学府量子線物理計測グループ 博士後期課程2年 楊 叶

- 東京大学素粒子物理国際研究センターシンポジウム@白馬

Contents

背景

- パイオン捕獲磁石システム
- 放射線劣化
- まとめ

Quark transition observed

- ミューオン電子転換過程の発見は新しい物理の証 拠となる
- COMET実験:
 - μ^- + (A, Z) \rightarrow e + (A, Z)
 - 目指す実験感度: < 6 x 10-17

大強度ミューオンビームライ ンの開発が必要となる (現在、COMET実験のため、J-PARCで超伝 導磁石を用いた大強度ミューオンビームライ

ンを建設中である)

COMETミューオンビームライン

Kyushu University, Y.Yang

kanouyou@kune2a,nucl.kyushu-u.ac.jp

パイオン捕獲磁石: MuSIC VS COMET

	MuSIC	COMET
ミューオン強度	10 ⁸ µ/sec (DC)	>10 ¹¹ µ/sec (pulsed)
一次陽子ビーム	3.9GeV, 0.4kW	8GeV, 56kW
中心磁場	3.5 Tesla	5 Tesla
直径(捕獲磁石)	900 mm	1344 mm
長さ(捕獲磁石)	1580 mm	6520 mm

Kyushu University, Y.Yang

kanouyou@kune2a,nucl.kyushu-u.ac.jp

Coil Structure

Radiation Issue

Kyushu University, Y.Yang

kanouyou@kune2a,<u>nucl.kyushu-u.ac.jp</u>

ation Estimation

Iron

- 3次元FEMで計算したマップを使用
- MCシミュレーションの結果:

Peak	Dose [MGy/280 days]	DPA [DPA/280 days]	Neutron Flux [n/m²/280days]
CS0	2.1	5.2E-04	5.0E+23
CS1	3.2	6.9E-04	6.2E+23
MS1	1.6	4.1E-04	4.0E+23
MS2	0.6	1.0E-04	1.0E+23

Kyushu University, Y.Yang

kanouyou@kune2a,<u>nucl.kyushu-u.ac.jp</u>

Thermal Degradation on Material

Kyushu University, Y.Yang

kanouyou@kune2a,<u>nucl.kyushu-u.ac.jp</u>

Thermal Conduction Simulation

Quench Protection

Kyushu University, Y.Yang

kanouyou@kune2a,nucl.kyushu-u.ac.jp

Method for Quench Estimation

kanouyou@kune2a,nucl.kyushu-u.ac.jp

90日間連続運転後、捕獲磁石システムがクエンチして、電源遮断する場合:

最高温度:93K(許容温度:200K)

コイル電圧上昇:<350V(許容電圧:500V)

今後の予定とまとめ

・ まとめ:

- COMET実験のための超伝導磁石現在開発を進んでいる
- COMETのパイオン捕獲ソレノイドは放射線の被曝により、劣化をする
- 現在の設計は90日間の連続運転が可能
- 磁石システムのクエンチ後の最大電圧、最大温度は大丈夫です!

今後の予定:

- 絶縁デープの熱伝導率の劣化の測定
- 磁石クエンチ:
 - 最高上昇する温度は熱容量に大きく依存している
 - 放射線によるアルミの熱容量の劣化を調査する
 - 実験は難しい → 固体物理の第一原理計算?
- 耐放射線磁石の開発:
 - COMETの捕獲磁石:NbTi → Tc(I, B)~9.3 K
 - 高温超伝導テープ: ReBCO → Tc(I, B) > 77 K
 - 放射線問題の解決を期待される
 - 現在、HTSの放射線による臨界電流の劣化を調査中

身内さんに対抗や!! (着ぐるみ)6千円かかって るから、ぜひおもろい写真 よろしく!

Thanks

パワハラ

謝辞: 高エネ研の上野助教に深く感謝します

問題発生です!

身内さんいません(・∀・

Ō

ざわ…

●●●○○ au 4G

G

00

23:24

上野ぱいせん (KEK)

無事に届きた! 10:28

上野ぱいせん (KEK)

上野ぱいせん (KEK)

上野ぱいせん (KEK)

独壇場だな

+)*

さらなる結果を期待する

既読4

ざわ…

€ 99%

(B)

"Backup starts from here."

- Thanks

ミューオンの生成方法

Irradiation for GFRP

A. Isesaki et al., Fusion Eng. Des. 112(2016) 418-424

Quench Estimation

- <u>Requirement for Quench:</u>
 - Allowable voltage for electronics: < 500 V
 - Peak temperature: < 200 K
- Using the adiabatic model to estimate maximum temperature of quench
 - Radiation caused the RRR degradation of conductor
 - If RRR < 100, maximum temperature > 200 K
 - the quench simulation is necessary to check the capture system quench

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002

- Simulation Code for Quench:
 - Developed quench code for COMET superconducting system
 - Enable to obtain from GitHub:
 - git clone <u>https://github.com/</u> kanouyou/CometQuenchCode-.git
 - Tested the algorithm by simulating the Atlas Central solenoid
 - ~10% disagreement but no ridiculous result
 - disagreement may come from the material property

Coil Quench at Different Location

- Unexpectable quench:
 - The hot spot may appear at some unexpected location (not only the place where the maximum temperature located)

- Set the hot spot in the different location of CS0, CS1 and MS1
 - CS0: lower left, lower right, upper right, upper left
 - CS1: lower center, lower right
 - MS1: lower right
- Assuming the quench starts at 90th day of operation
- Result:
 - · All of these cases has no overheating issue