

LHC-ATLAS実験Run-3 に向けた トリガー判定回路と

新トリガーロジックの開発

 0. Introduction
 1. トリガー判定回路の開発
 2. トリガーロジックの研究 まとめ

京都大学 高エネルギー物理学研究室 修士2年 赤塚 駿一

ICEPP シンポジウム 2017年 2月 20日

0. Introduction
 1. トリガー判定回路の開発
 2. トリガーロジックの研究

まとめ

Introduction

ATLAS実験のトリガーシステム

- ◆ トリガーの必要性
 - ▶ LHC の陽子バンチ交差は40 MHz, 記録できるイベントは~1 kHz
 - → 興味のあるイベントを判別し, 選択的に取得したい.
 - ▶ 例:Wボソンから崩壊したミューオンは比較的高い横運動量(pT)をもつ
 → pT の高いミューオンがあるイベントは,データを取ることにする
 - ▶ Run-3 ではルミノシティは現在の2倍 —> トリガーの性能は非常に重要
- ◆ ATLAS 実験のトリガーシステム
 - ▶ 2段階に分けてトリガー判定を行っている。
 - ▶ Level-1 で高速ハードウェアトリガー, High Level で精密なソフトウェアトリガー

Level-1 ミューオントリガー

 ◆ ミューオントリガーでは, p⊤の大きいミューオンが存在する事象を 選別して取得する

▶ 20 GeV のpr閾値のLevel-1トリガーで取得したミューオンのη分布

が大きな割合を占める

Run-3 におけるミューオントリガー

- ◆ <u>TGC Big Wheel</u>での曲がり具合 による pr 計算
 - + 磁場内側の検出器との<u>コインシデンス</u>

 0. Introduction
 1. トリガー判定回路の開発
 2. トリガーロジックの研究 まとめ

NewSL ボードの開発

New Small Wheel の導入後のトリガー

トリガー判定回路:NewSL

◆ 2016年3月:新トリガー判定ボード "NewSL"のプロトタイプボード 5枚が完成 Xilinx社の FPGA (書き換え可能な集積回路)

を用いて**大規模トリガーロジック**を実装

 O. Introduction
 1. トリガー判定回路の開発
 2. トリガーロジックの研究 まとめ

トリガーロジックの研究

NSW の位置のコインシデンス

- ◆ NSW のヒット位置の情報は横運動量の判定能力を持つ
 - BW の曲がり具合の指標, dRは分解能が高くない(典型的にdη~ 0.02)
 NSW の高い分解能(dη~0.005)を用いれば, 低いp⊤のイベントを さらに排除できる。

|()

NSWの角度情報を用いたコインシデンス 1

- ◆ 角度情報を用いれば, 低いpr の事象を削減できる
 - ▶ 下の図に示すように、角度情報dθは磁場の内部の情報を持つ
 - 位置のみでは区別できない低いprのイベントを判別できる
 -> 角度情報を用いた新しいロジックの開発

角度情報によるpr分解能の改善

- dθとdηの相関
 - ▶ Big Wheel 上のある位置(n~1.93)にヒットがあった時の dn とdθの相関を, pT ごとに見ると:

 • dŋ とdθ には, p⊤毎に違った相関が見える.

 2つの情報を組み合わせることでp⊤判定能力を向上できる

$d\eta: d\theta$ 相関を用いたロジック

- ◆ "Coincidence Window" を用いてロジックを実装
 - トリガーを発行する条件を規定したCoincidence Window を定める.

例えば、横運動量 20 GeV以上のミューオンに対するC.W. の場合:

- ▶ 20 GeV と40 GeV のミューオンのヒット分布を作成(左の図)
- ▶ ヒットの99% を含む, 右の図のような「マス」を定義 <--- Coincidence Window

 Coincidence Window 内の条件を満たす場合のみ、コインシデンスが取れた と判断し、トリガー判定を行う、(dŋ:dφ Coincidence も同じように実装)

角度情報を用いたトリガーの性能

◆ 各 p⊤のミューオンに対する, トリガー発行の割合

▶ 下の例は、閾値20 GeVのトリガーに対して適用した場合.

角度情報を用いたトリガーの性能

◆ 各 p⊤のミューオンに対する, トリガー発行の割合

▶ 下の例は, 閾値20 GeVのトリガーに対して適用した場合.

レート削減の見積もり

- ◆ 2016年のデータを用いたトリガーレートの評価
 - ▶ 下の例は, 閾値 20 GeV のトリガーで取得されたイベントのpr 分布に対して 前ページのトリガー判定の割合を掛けたもの.

▶ 閾値10 GeVのトリガーに対しでも同じように見積もった結果, -16% (NSW 領域), -8% (全体) のレート削減が達成された.

まとめ

- ◆ LHC Run-3 ではさらなる高エネルギー・高統計で新物理に迫る
 - ▶ 高いルミノシティにおいてトリガー性能の向上は必須.
 - ▶ ミューオントリガーにおいてはフェイクと, 低いp⊤のイベントの排除が鍵.
- ◆ 新しいトリガー判定回路 "NewSL" の開発
 - ▶ 大容量FPGA と高速トランシーバGTX を搭載した**ボードを作成**した.
 - ▶ これにより, BW と NSW の情報を合わせたトリガーが可能となる.
- トリガーロジックの研究
 - ▶ NSW の高い位置分解能を利用したコインシデンスロジックで、 フェイクの削減,及び低いprのミューオン事象を削減する.
 - ▶ 位置のコインシデンスに加え,

<u>角度情報を用いた新しいトリガーロジック</u>を開発した.

▶ 新トリガーロジックを導入することで、トリガーレートを 7.5% (NSW 領域では15%) 削減できることを示した. これにより、Run-3 において予想されるレベル1ミューオントリガーレートは、 13 kHz -> 12 kHz となる.

backup slides

LHC-ATLAS 実験

- Large Hadron Collider (LHC)
 - ▶ CERN に設置された陽子-陽子衝突型加速器
 - ▶ 40 MHzで陽子の「バンチ」を衝突させる
 - ▶ 2021年に開始する Run-3 では重心系エネルギー √s = 14 TeV に, 瞬間ルミノシティ L = 2~3 × 10³⁴ cm⁻²s⁻¹ になる予定 <- 現在の2倍 高エネルギー・高統計のデータで新物理に迫る
- ◆ ATLAS実験
 - ▶ LHC の衝突点に設置された大型汎用検出器 ATLAS を用いた実験
 - ▶ 全立体角を様々な検出器で覆い、粒子の種類・エネルギー・運動量を測る.
 - -> 衝突点での物理過程を再構成し, 新物理を探索する.

LHC-ATLAS 実験

トリガー改良の必要性について

◆ Run-3 におけるトリガーレート

◆ 仮に閾値を40 GeV にした場合

21

 改良無しでトリガーレートを15 kHz に するには、閾値を 40 GeV 程度まで 上げなければいけない

閾値を 40 GeV にすると, 例えば
 ヒッグスがWと同時に生成されたとき,
 そのW からのミューオンの取得効率
 は61% となってしまう.

New Small Wheel

- sTGC と Micromegas からなる検出器
 - sTGC- small strip TGC
 - ▶ strip 間隔が 3.2mmで, TGC (15 mm 以上)より小さい
 - ▶ wire-strip のペアからなる. 4層で1 module を構成
 - strip の電荷重心を用いてη方向を測っており,
 位置分解能 60~150 μm (ミューオンの入射角度に依る)
 - Micromegas- micro mesh gaseus structure
 - ▶ 位置分解能 ~90 µm の, 右下図のような検出器
 - メッシュ~ strip 間の短い区間で増幅が行われるため,
 レート耐性が高い.
 - ▶ 8層構造で sTGC 4枚組の間に設置され, New Small Wheel を構成する

Region of Interest (Rol)

- ◆ TGC BW でのトリガー単位.
 - ▶ NewSL で用いることができるBW の読み出し単位.
 - NSW を用いた各種ロジックは、 「BW のヒット位置ごとに」
 C.W. を用意しているが、
 これは「Rol ごとに」と
 言い換えることができる.
 - Endcap (大きい方)では148個,
 Forward (小さい方)では64個の
 Rol で「トリガーセクター」を
 構成する.

ミューオントリガーシステムの詳細

高速トランシーバ GTX

◆ FPGA に搭載された, 通信速度 約10 Gbps 対応の高速トランシーバ

25

▶ 通信を行うためには,各機能のパラメータを正しく設定する必要がある 例えば、送信・受信時の遅延を一定,かつ最小にするためには, 送受信 Buffer のバイパス設定をする必要がある

I/O テスト結果

◆ GTX ループバックによるエラーレート測定

- ▶ 送信・受信でのデータが合致しているかを監視することでエラーレートを計測. エラーレート < 3×10⁻¹⁵ を確認. (6.4 Gbps)
- ▶ Eye Pattern(右図)も正常.

ボード番号	試験時間 [s]	転送ビット [Gbit]	ビットエラー数	Bit Error Ratio $[s^{-1}]$
NewSL ver.2-1	41500	335000	0	$< 2.98 \times 10^{-15}$
NewSL ver.2-2	51800	414000	0	$< 2.42 \times 10^{-15}$
NewSL ver.2-3	44600	357000	0	$< 2.80 \times 10^{-15}$
NewSL ver.2-4	44700	357000	0	$< 2.80 \times 10^{-15}$
NewSL ver.2-5	46600	373000	0	$<2.68\times10^{-15}$

🌃 SiTcpユーティリティ

 その他, のI/O についても試験を行い, 正常に動作することを確認.
 NewSL ボードが Run-3 で要求される 性能を満たすことを示した.

SiT	CP U	tility	Version, 0.9 Copyright(C) Bee Beans Technologies,I	
一般	制御(UDP)	データ(TCP)		
受付 受付	言サイズ=12,28 言レート=161.32	8 Bytes 2 kbps	受信時間=0.61 sec	受信開始
ファ	イルに保存			開く
	ファイルのテキス データ表示(65)	ト変換 535byteまで)	フォーマット 11111111111111	11
11 21 31 01 11 21 31 01 11 21 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 17 18 19 26 27 28 29 36 37 38 39 06 07 08 09 16 17 18 19 26 27 28 29 36 37 38 39 26 27 28 29 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39 36 37 38 39	1A 1B 1C 1D 1E 1F 20 2A 2B 2C 2D 2E 2F 30 3A 3B 3C 3D 3E 3F 40 0A 0B 0C 0D 0E 0F 10 1A 1B 1C 1D 1E 1F 20 2A 2B 2C 2D 2E 2F 30 3A 3B 3C 3D 3E 3F 40 0A 0B 0C 0D 0E 0F 10 1A 1B 1C 1D 1E 1F 20 2A 2B 2C 2D 2E 2F 30 3A 3B 3C 3D 3E 3F 40	~
<				>

Sitcp

- ◆ FPGA をEthernet に接続する技術
 - ▶ FPGA 常にSiTCP を実装することで, TCP/IP でのデータ通信を実現.
 - ▶ 1つのFPGAチップ上に、ユーザー回路と共に実現可能な回路規模で 実装できる点が特徴.

 必要な外付けチップは市販のEthernet PHY チップと, MAC アドレス格納用のEEPROM のみと, 少ない.

NSW からのデータフォーマット

◆ 1 トラックあたりの情報

Field:	sTGC type	MM type	$\Delta \theta$ (mrad)	Φ index	R index	Spare	
Num of bits:	2	2	5	6	8	1	= 24 bits
sTGC/MM TypeNo segments:00Low quality:01Medium quality:10High quality:11		2 2 2 2 ($\frac{\Phi: 10 \text{ mrad/bit}}{2\pi \text{ rad / 12 (or24) / 10 mrad} = 52.3 \rightarrow 6 \text{ bits}}$ $\frac{n : 0.005/\text{bit}}{(2.4-1.3) / 0.005 = 220 \rightarrow 8 \text{ bits}}$				

$\Delta \theta$: 1 mrad/bit

 ± 15 mrad is enough to select muons from IP $\rightarrow 5$ bits

NSW からのデータフォーマット(続き) 29

- ◆ 1枚の NewSLが受け取る情報
 - ▶ 1枚のNewSL は最大3つのNSW セクターから情報を受けとる.
 - ▶ 各 NSW セクターからは8本のトラック情報を, 2本のファイバーで受信する.

Words	first byte		second byte		
Word-0	comma		comma		
Word-1	track-0				
Word-2					
Word-3	track-1				
Word-4	track-2				
Word-5					
Word-6	track-3				
Word-7	ID (4-bit) BCID (12-bit)				

- NewSL は最終的に最大6トラックを 選択してトリガーを発行する.
- 従って、6本以上のトラック情報を NSW セクターから受け取る必要 がある.

dŋ:døコインシデンスロジック

Coincidence Window

