

ATLAS実験における Micromegas検出器を用いた トリガーアルゴリズムの開発と評価

東大ICEPP 川本研 M1 前川光貴

23rd ICEPPシンポジウム 2017年2月20日(月) @白馬

LHC アップグレード

New Small Wheel (NSW)へのアップグレードの目的

New Small Wheel (NSW)の導入

現在の検出器は高ヒットレートでトラッキング効率が低下

➡ 応答時間の短い検出器にアップグレード NSW

Micromegas 検出器

初段階(レベル1) ミューオントリガー

MMトリガーアルゴリズム

MMでの具体的な計算手順 8層のうち、 4層がθ方向(水平)にストリップが並び、(X) 残り4層が±1.5度傾いてストリップが並ぶ。(UV)

- 1. X(水平)のみを用いて、 IP方向からのずれΔθと、ヒット位置のηを算出。
- 2. X(水平),UV(傾きあり)全てを用いて、 ヒット位置の

 を算出。

トリガーシミュレーションの目的

<u>Micromegasに対するトリガーとしての要求</u>

- ●検出効率 > 99% (Track Finding Efficiency)
- $\sigma(\Delta\theta) < 1$ mrad
- $\sigma(\eta) < 0.005$
- $\sigma(\phi) < 20$ mrad
- レイテンシー < 1μs
 - <u>トリガーシミュレーションの目標</u>

実装可能なトリガーアルゴリズムの開発

シミュレーションで、 バックグラウンドを含めたMicromegasのトリガー性能評価を行う。 さらにハードウェアに実装しての性能評価を行う。

MMトリガーシミュレーションの全体

今回は、シミューションを用いて、理想的な状態でのトリガー性能評価を行った。

・横運動量 100 GeVの
 シングルミューオンイベントと、
 1バンチクロッシングあたり
 パイルアップ数80(=Run3相当)の
 minBias BGを重ねたものと両方を生成。

・電子のドリフト
・ガス検出器の電子増幅
・シェイパーの応答
・トリガー信号の出力
これらをシミュレーション

現在MMトリガーボードに 実装される予定のものと 同じアルゴリズムを用いて、 性能を評価した。

トリガー用信号の選び出し方

2017/2/20

23rd ICEPPシンポジウム

トラック再構成の手順とTrack Finding Efficiency

3X3UV以上@50nsを要求してのFitting

最終的にBWへ送る3つのパラメータについて、分解能を求めた。

	分解能(3σ tail)	Requirement
$\sigma(\Delta oldsymbol{ heta})$	1.1mrad (7.2%)	1mrad
$\pmb{\sigma}(\pmb{\eta})$	5.0×10 ⁻⁵ (8.3%)	5×10 ⁻³
$\pmb{\sigma}(\pmb{\phi})$	2.0mrad (11%)	20mrad

シングルミューオン

• $\sigma(\eta)$ 、 $\sigma(\phi)$ が良い理由は、 細かいピッチによる高い位置分解能。 • Run3では $\Delta \theta$ は $\Delta \theta < 7 \sim 15$ mradのカットの形でしか使わないため、 Requirementから外れても影響は少ない。

Tailの由来

バックグラウンドの影響

Track Finding Efficiency (バックグラウンドありの場合)

バックグラウンドあり

Slope Coincidence			
Efficienc	у		
	25ns	50ns	75ns
2X1UV	98.9(+-0.2)%	99.85(+-0.07)%	100(+-0)%
2X2UV	97.9(+-0.3)%	99.85(+-0.07)%	100(+-0)%
3X2UV	90.7(+-0.6)%	99.2(+-0.2)%	99.7(+-0.1)%
3X3UV	84.4(+-0.7)%	98.9(+-0.2)%	99.6(+-0.1)%
4X3UV	53.6(+-1.0)%	93.6(+-0.5)%	96.5(+-0.4)%
4X4UV	36.6(+-0.9)%	90.9(+-0.6)%	95.5(+-0.4)%

② 芍 : ンノツ ルミューオレ

Slope Coi	ncidence Efficiency		
	25ns	50ns	75ns
2X1UV	99.29(+-0.02)%	99.952(+-0.006)%	99.980(+-0.004)%
2X2UV	98.72(+-0.03)%	99.952(+-0.006)%	99.980(+-0.004)%
3X2UV	91.66(+-0.07)%	99.28(+-0.02)%	99.66(+-0.02)%
3X3UV	86.06(+-0.09)%	99.28(+-0.02)%	99.66(+-0.02)%
4X3UV	55.5(+-0.1)%	95.25(+-0.06)%	97.80(+-0.04)%
4X4UV	37.1(+-0.1)%	93.57(+-0.07)%	97.79(+-0.04)%

 25nsで切った時の数%のInefficiencyは、 Deadtime40nsとBack Groundによって 起こる

2017/2/20

3X3UV以上@50nsを要求してのFitting(バックグラウンドあり)

3つのパラメータについて、バックグラウンドを含めて分解能を求めた。

Δθの残差分布

	分解能(3σtail)	Requirement
$\sigma(\Delta \theta)$	1.0mrad (9.1%)	1mrad
$\sigma(\eta)$	4.2×10 ⁻⁵ (11%)	5×10 ⁻³
$\sigma(\phi)$	1.7mrad (16%)	20mrad

シングルミューオンの時よりもTailは増える。 混入ヒットの増加によるTailの悪化。

分解能は変化せず。良くなっているように見えるのは、 統計上の問題

BGあり

23rd ICEPPシンポジウム

BACK UP

23rd ICEPPシンポジウム

3次元Fitting方法

- ●Minuitを使い、鳴ったストリップとミューオン飛跡の 距離の総和を算出。
- IP固定をして、上記の値を最小化。
 Hit位置のη, φを算出。
- ●バックグランドがない状態でも、
 検出器に来るまでにミューオンが弾いてできる
 二次粒子が存在。
- ミューオン由来でない信号は今回は除去している。

あるイベントでのR-Z図 Ę4000 ストリップ信号ミューオン由来でない 3500 Truthの * . . 3000 ミューオン飛跡 2500 粒子hit 2000 1500 -オン田釆 00 1000 -7700 -7600 -7500 -7400 -7300 -7100 z/mm Pt = 100GeV

Threshold値を変えてのEfficiency比較(1)

トリガー信号では、Thresholdを超えた時間を出力する

Threshold値を変えてのEfficiency比較(2)

Threshold値を変えて、検出器の応答時間の違いを見た

ThresholdがMIPで見える信号の1/10と1/5の時では変化がなく、

2/5ではEfficiencyが落ちる。

→ プラトーを確認したので今回は1/10に設定

Digitization σ Validation (1)

ストリップ電荷 (ピーク値)

Digitization **D**Validation (2)

クラスター幅の比較(テストビームとGarfield++)

- Digitization
 (Threshold=0, diffusionSigma=0.036)
- \bigcirc : Digitization (Threshold=0, diffusionSigma \times 2)
- \triangle : Digitization (Threshold=0.3)
- ▲ : Digitization (Threshold=1.0)
- : Garfield++ (ArCO₂)
- : Test beam result (in Japan)

Back Groundのヒットレート

