CANDLES Experiment Current Status and Future Plan

for the CANDLES Collaboration

Neutrinoless Double Beta Decay (0vββ)

Detection Principle

 $(A, Z) => (A, Z+2) + 2e^{-1}$

- process beyond Standard Model
 - Lepton number violation
 - Majorana particle
 - none-zero neutrino mass
- not observed yet
- predicted lifetime: $T_{1/2} > 10^{26}$ year
- $2\nu\beta\beta$ decay target: ⁷⁶Ge, ¹³⁶Xe, ..., ⁴⁸Ca etc
- detect sum energy of two β rays
 2νββ: spectrum is continuous up to Q_{ββ} value
 0νββ: a single peak at Q_{ββ} value
- reduce background
- improve energy resolution to separate 2νββ and 0νββ

CANDLES Experiment

Choosing a 2vßß source isotope

candidate	$Q_{\beta\beta}(MeV)$) NA(%
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
$^{124}Sn \rightarrow ^{124}Te$	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

CANDLES's idea

- use CaF₂ crystal scintillator and PMT to make a calorimeter
- develop a 4π active veto with liquid scintillator (LS) to reduce external gamma background by PSD (p.5)

◆ ⁴⁸Ca isotope

- largest $Q_{\beta\beta}$ value in all the candidates
 - ◆ less environment radiation, e.g. ²⁰⁸Tl
 - potential to achieve BG free environment
 - large phase space factor that the decay rate is faster than other isotopes
- natural abundance is low
 - some enrichment methods are under development

Detector Structure

4

Background Reduction

• DAQ records waveform and time information => Analysis calculates position, energy, Particle ID information of γ/β and α to reduce BG

Background Spectrum

◆ 27 clean crystals (Th contamination < 10µBq/kg) from all 96 crystals are selected. The result is compared with the one of all crystals.

Sensitivity of CANDLES

- Sensitivity for $0\nu\beta\beta$ in 1 year is calculated from expected backgrounds
 - data set: 21.5 days after shielding
 - $Q_{\beta\beta}$ region: 4170 ~ 4480 keV ($Q_{\beta\beta}$ -1 σ +2 σ)

	without multi-hit cut		with multi-hit cut	
	27 crystals	all crystals	27 crystals	all crystal
events at $Q_{\beta\beta}$ region	1	5	0	0
expected ²⁰⁸ Tl	0.22	2.2	0.14	1.4
expected (n, γ)	0.01	0.04	0.01	0.04
detection efficiency	46%		30%	
sensitivity for 1 year	0.7×10 ²³ yr	1.0×10 ²³ yr	0.5×10 ²³ yr	0.9×10 ²³ yr

Sensitivity of CANDLES experiment for $0\nu\beta\beta$ using 1 year data is $0.5 \sim 1.0 \times 10^{23}$ year

Future Plan of CANDLES Experiment

- The key to challenge 0vββ decay up to higher sensitivity is the enrichment of ⁴⁸Ca isotope
 - natural abundance $0.187\% \Rightarrow Max \times 500$ enrichment factor is possible
 - four enrichment methods are being developed at below facilities
 - ◆ crown ether resin + chromatography (Osaka Univ, TIT, ...)
 - crown ether + micro reactor (Osaka Sangyo Univ)
 - laser seperation (Fukui Univ)
 - multi-channel counter current electrophoresis (Osaka Univ)
- The ultimate BG will be $2\nu\beta\beta$ decay after enrichment
 - ◆ apply high energy resolution (0.5%FWHM) technology to CANDLES
 - bolometer method
 - phonon statistics, better than photon statistics
 - bolometer experiment group
 - ◆ CUORE: 0.2% (¹³⁰Te)
 - ◆ AMoRE (¹⁰⁰Mo)
 - CRESST (dark matter)

Energy Resolution

Next Generation: Scintillating Bolometer

Development Status

Dilution Refrigerator

- Dilution refrigerator made by Tokyo Univ
 - developed for dark matter research, so customized to low BG measurement
 - we apply it to $0\nu\beta\beta$ decay search
- Cooling system reconstruction
 - have made a new circulation pipeline for costly ³He without any leakage
 - have achieved 4K, 1K and will challenge 10mK in April this year

CaF₂ Detector modules

Summary

- CANDLES is a project to search for neutrinoless double beta decay using ⁴⁸Ca isotope in 300 kg CaF₂ scintillator, running at Kamioka underground laboratory.
- ◆ The sensitivity of CANDLES detector is 0.5 ~ 1.0×10²³ year with 1 year data.
- The next generation detector "Scintillating Bolometer" with high energy resolution is being developed.

Thank you