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Abstract

In the anomaly-mediated supersymmetry breaking model with the assumption of
the generic form of Kähler potential, gauginos are the only kinematically accessible
superparticles to the LHC. We consider the LHC phenomenology of such a model
assuming that the gluino is lighter than 1 TeV. We show that a significant number of
charged Winos, which may travel O(10 cm) before the decay, are produced from the
gluino production processes. Thus, in this class of model, it will be very important
to search for short charged tracks using inner detectors. We also show that, if a
large number of the charged Wino tracks are identified, the lifetime of the charged
Wino can be measured, which provides us a test of anomaly mediation.
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1 Introduction

Once supersymmetry (SUSY) is broken in a hidden sector, the SUSY-breaking effects

are automatically transferred to the SUSY standard model (SSM) sector by the tree-level

supergarvity (SUGRA) interactions. That is, squarks and sleptons acquire soft SUSY-

breaking masses of order of the gravitino masses m3/2. However, the gauginos are all

massless at this level and hence one usually introduces couplings between a hidden field

Z and the gauge-field-strength superfield W i
α as (Z/MPL)W iαW i

α. Here, MPL ≃ 2.4×1018

GeV is the reduced Planck mass and the hidden field Z is supposed to have a SUSY-

breaking F term. Provided that the F term is the dominant component of the SUSY

breaking, one obtains the gaugino masses of order of the gravitino mass m3/2. In this

scenario the hidden field Z must be completely neutral to have the above coupling to

the gauge kinetic functions. However, the neutrality of the hidden field Z causes serious

cosmological problems; the so-called modulus problem [1] and the over-production of the

gravitinos in inflaton decays [2].

It was sometimes ago pointed out [3, 4] that the one-loop quantum effects induce

the gaugino masses in the SSM without the neutral hidden field. This mechanism is

called as ”anomaly mediation”. Namely, the anomaly mediation always takes place in the

quantum SUGRA and the gauginos become massive without any neutral hidden field once

the SUSY is broken. Therefore, the model is free from the above cosmological problems

since there is no need to introduce a neutral hidden field.

The anomaly mediation predicts so-called split SUSY spectrum where squarks and

sleptons may have masses of the order 100 TeV while the masses of gauginos are in the

range of 100 GeV − 1 TeV. (The gaugino masses is suppressed, since they are generated

at the one-loop level.) Because of the relatively large masses of squarks we need a very

precious fine-tuning of parameters to obtain the correct electro-weak symmetry breaking,

but on the other hand it solves many serious problems in the SSM. First of all the flavor-

changing neutral current and CP-violation problems become very milder due to the large

masses of squarks and sleptons. We may naturally explain no discovery of Higgs at LEP

and no discovery of proton decays induced by dimension-five operators. Furthermore, the

gravitino mass is also predicted at the order of 100 TeV, which makes another cosmological
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gravitino problems much less severe [6]. (The gravitinos are also produced by particle

scatterings in the thermal bath in early universe. We have upper bounds of the reheating

temperature TR to avoid over-production of the gravitinos depending on the gravitino

mass.) In fact, it has been pointed out [5] that the leptogenesis does work in the anomaly-

mediation model, since the reheating temperature TR can be as high as 1010 GeV without

any confliction with cosmology.

Although the squarks and sleptons are so heavy as explained above, the masses of

gauginos may be in the accessible range to the LHC experiments. The anomaly mediation

predicts a certain relation among the gaugino masses such as M2 < M1 < M3 (where

M1, M2, and M3 are gaugino masses for U(1)Y, SU(2)L, and SU(3)C gauge groups,

respectively) in a large region of the parameter space [7]. And the charged wino has a

considerably long lifetime as cτW̃± ∼ 5 cm (with c being the speed of light). Interesting

enough is that the lifetime is almost independent of the parameters in the anomaly-

mediation model. Thus, we consider that not only the observation of such a long-lived

charged particle but also the measurement of its lifetime at the LHC provide a serious

test of the anomaly-mediation model.

In the previous work [7] we consider a very pessimistic situation where the gluino

g̃ is too heavy to be produced at the LHC and hence the number of produced winos

W̃ is limited. In this letter we assume that the gluino is lighter than 1 TeV and they

are efficiently produced at the LHC. And we show that the large number of winos are

produced through the gluino production and the lifetime of the charged wino may be

measured at the LHC to test the anomaly mediation.

We also note that it will be difficult to confirm supersymmetry even at the LHC

experiment, if the present anomaly-mediation model is realized. Thus, it is important to

see if the properties of the unstable charged particle, observed as short charged tracks,

are consistent with the prediction of the anomaly-mediation model.

2 Properties of Gauginos

First, we summarize the mass spectrum of superparticles in our analysis. In the anomaly-

mediation model where the Higgsinos (as well as sfermions) acquire masses of O(10 TeV),
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radiative correction due to the Higgs-Higgsino loop diagram significantly changes the

gaugino-mass relation predicted in the pure anomaly-mediation model [8]. In our study,

we consider the case M2 < M1 < M3, but the ratio M3/M2 is assumed to be much

smaller than the predicted value from the pure anomaly-mediation model. In our following

numerical study, we use the gaugino mass parameters

M2 = 200 GeV, M3 = 1 TeV, (1)

and consider the case where gluino dominantly decays as g̃ → W̃qq̄ (and hence the bino

is irrelevant in our study). In this case, a large number of winos are produced from the

gluino production processes at the LHC, contrary to the assumption used in [7]. Then,

detailed studies of the properties of wino may be possible. For example, with the gluino

mass of 1 TeV, the gluino production cross section at the LHC is σpp→g̃g̃ ≃ 220 fb. (Here,

we have taken the renormalization scale to be the gluino mass.) Since the gluino decays

into the charged wino with the branching ratio of 2/3, charged winos of O(105) is produced

with the Luminosity of 100 fb−1 (although many of them decay without being detected).

Next, let us discuss the properties of winos in the anomaly-mediation model. The

mass difference between charged and neutral winos originates dominantly from 1-loop

Feynmann diagrams with electro-weak bosons in the loop. Then, charged wino becomes

heavier than neutral one, and the mass difference is given by [9]

δmW̃ = mW̃± − mW̃ 0 =
g2
2

16π2
M2

[

f(rW ) − cos2 θW f(rZ) − sin2 θW f(0)
]

, (2)

where f(r) =
∫ 1
0 dx(2 + 2x2) ln[x2 + (1− x)r2] and ri = mi/M2. The mass difference is in

the range 155 MeV <
∼ δmW̃

<
∼ 170 MeV, which is much smaller than the (expected) wino

mass parameter M2. If W̃ 0 is the LSP, W̃± dominantly decays as W̃± → W̃ 0π± and its

lifetime becomes very long; in such a case, the lifetime of W̃± is given by

τ−1
W̃±

=
2G2

F

π
cos2 θcf

2
πδm3

W̃

(

1 −
m2

π

δm2
W̃

)1/2

, (3)

where fπ ≃ 130MeV, and θc is the Cabbibo angle. Numerically, the lifetime is of

O(10−10 sec). Importantly, the mass difference δmW̃ , and hence the lifetime τW̃±, are

insensitive to the wino mass parameter M2. Thus, if the lifetime of charged wino is ex-

perimentally determined, it provides an important test of the anomaly-mediation model.
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Figure 1: Number of charged winos produced at the LHC, which travel transverse distance
longer than L

(min)
T . The solid line is for the process pp → g̃g̃, while the dotted line is for

pp → W̃W̃ jpT>100 GeV Here, we use the luminosity of 100 fb−1.

The smallness of the mass difference has a significant implication for collider experi-

ments when the neutral wino W̃ 0 is the LSP. In this case, the NLSP, charged wino W̃±,

decays into the neutral one W̃ 0 by emitting very soft π± which easily escape the detec-

tion. This fact makes the discovery of W̃± at the LHC very challenging. However, with

the lifetime estimated above, the charged winos produced in the LHC experiment are

expected to travel ∼ O(1 − 10 cm) before they decay. Thus, they travel for macroscopic

distances and some of them may decay after traveling through some of the detectors. In

such a case, charged winos may be observed as energetic short charged tracks.

In Fig. 1, we plot the number of W̃± from the gluino production process pp → g̃g̃,

requiring that the transverse travel length of W̃± be longer than than L
(min)
T (with the

luminosity of 100 fb−1). There are still a few hundred of the non-decay winos at even

L
(min)
T = 54 cm, at which the transition radiation tracker (TRT) is set in the ATLAS

detector. By using these samples, we may be able to extract information on the winos

as we will discuss in the following section. This may provide quantitative tests of the

anomaly-mediation model. For comparison, we also plot the number of W̃± from the

Drell-Yan induced process pp → W̃±W̃∓jpT>100 GeV and pp → W̃ 0W̃∓jpT>100 GeV, where
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jpT>100 GeV denotes the energetic jet with the transverse momentum larger than 100 GeV.

(The jet is a necessary trigger for the event [10].) With the mass spectrum we have

adopted, the gluino production process produces a larger amount of charged winos than

the wino + jet production process if L
(min)
T

>
∼ 10 cm. In the following numerical analysis,

for simplicity, we only consider the winos produced by the process pp → g̃g̃.

3 Measurement of the Lifetime

Now, we are at the position to discuss LHC phenomenology with the wino LSP. Since

we are interested in the charged wino whose lifetime is O(10−10 sec), most of the charged

winos produced at the LHC experiment will decay inside the detectors. Thus, we should

look for short charged tracks with high momentum which disappear inside the detector.

If we can obtain a large number of samples of short charged tracks, we may check if the

properties of the observed short-lived charged particle are consistent with the prediction

of anomaly-mediation model.

However, in the actual situation, such a study will be non-trivial. This is because,

first of all, it will be challenging to find such short charged tracks and, second, accurate

measurements of the travel length should be also non-trivial.

Importantly, the ATLAS detector has the TRT which may be useful for the detailed

study of the properties of charged wino. The TRT is located at 54 – 107 cm from the beam

axis [11] and continuously follows charged tracks. The TRT may be used to find charged-

wino tracks. In the following, we show how well we can study properties of charged wino,

assuming that the charged-wino tracks can be found with high efficiency with the TRT.

We have checked the tracking efficiencies and precision of the track resolution for the

various decay position in TRT, and they are found to be stable. So this assumption is

reasonable.

First, as discussed in [12], once the wino tracks are found, wino mass can be deter-

mined by combining the time-of-flight information with the momentum information. The

resolution of the velocity β is about 0.1 if β < 0.85. Then, the mass can be determined

with the accuracy of 10% if enough samples of the exotic tracks are available.

If a large number of samples of the charged wino are obtained in the form of short

5



charged tracks, distribution of the length of those tracks L can be derived. From the

distribution of L, the lifetime of charged wino may be also determined. As we have

mentioned, the lifetime of charged wino in the anomaly-mediated model is accurately

calculated, an interesting test of the anomaly-mediation model is possible by comparing

the experimentally determined lifetime with the theoretical prediction.

If a large number of charged winos at rest are available, the number of W̃± decreases

with time as NW̃± ∝ e−t/τ
W̃± . Thus, by fitting the survival probability with the exponen-

tial function, one may be able to determine the lifetime. However, in the LHC experiment,

charged winos are produced with various velocities, and hence we have to take into ac-

count the effect of γ-factor. In addition, probably the precise determination of the travel

length is possible only if (i) charged wino travels some amount of length in the TRT, and

(ii) charged wino decays inside the TRT.

In the following discussion, let us consider how we can determine the lifetime by using

only such limited samples. For this purpose, we assume that the charged winos satisfying

(i) and (ii) can be identified by the off-line analysis and that their travel length can be

determined.

In order to quantize the conditions (i) and (ii), we define the transverse travel length

LT as

LT = L sin θ, (4)

where θ is the direction of the charged wino with respect to the beam axis. Then, the

conditions (i) and (ii) becomes that the LT is in the “fiducial” volume of the TRT;

L
(min)
T < LT < L

(max)
T (with some relevant constraint on θ). In our numerical study, we

take L
(min)
T = 60 cm and L

(max)
T = 100 cm.

Using the fact that the momentum of individual charged track is measurable, we

parametrize the observable constructed from LT and the momentum as

LT − L
(min)
T

|pT|
≡ tDm−1

W̃±
, (5)

where pT is the transverse momentum, i.e., |pT| = |p| sin θ. The physical meaning of

tD is the time interval in the rest frame of W̃± between the moment corresponding to

LT = L
(min)
T and that of the decay. Importantly, when L

(max)
T → ∞, the distribution of
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Figure 2: The histogram is the distribution of the variable tD multiplied by the speed of
light. The dotted line is the number of events expected from the exponential distribution
(i.e., in the case of L

(max)
T → ∞).

the variable tD obeys P (tD) = P0e
−tD/τ

W̃± , where P0 is the normalization constant. Thus,

from the distribution of the variable tDm−1
W̃±

, we obtain information about the combination

τW̃±m−1
W̃±

.

In the actual situation, L
(max)
T is finite, and hence the distribution P (tD) does not

exactly follow the exponential behavior. However, even in that case, we may be able

to constrain τW̃±m−1
W̃±

. In Fig. 2, we plot the distribution of tD for L
(max)
T = 100 cm.

Here, using MadGraph/MadEvent package [13], we have generated 107 signal events and

calculated the distribution with Monte Carlo analysis. In addition, in the same figure, we

show the distribution for the case L
(max)
T → ∞. As one can see, for ctD

<
∼ 10 cm, P (tD) is

well approximated by the exponential function. Thus, if the distribution of tD is obtained,

we may be able to extract the information about the lifetime of the charged wino.

In order to see how well the lifetime (more accurately, the combination τW̃±m−1
W̃±

) can

be constrained, we first generate event samples using the underlying parameters given

in (1) for the luminosity of 100 fb−1 and calculate the distribution tD, P (tD). For the

statistical analysis, we classify the events into four bins, which are

7



Figure 3: Distributions of the variable LT for samples in bins 1− 4. Here, the luminosity
of 100 fb−1 is used.

1. 0 cm < ctD ≤ 2 cm (0 cm/GeV < ctDm−1
W̃±

≤ 0.01 cm/GeV),

2. 2 cm < ctD ≤ 4 cm (0.01 cm/GeV < ctDm−1
W̃±

≤ 0.02 cm/GeV),

3. 4 cm < ctD ≤ 6 cm (0.02 cm/GeV < ctDm−1
W̃±

≤ 0.03 cm/GeV),

4. 6 cm < ctD ≤ 8 cm (0.03 cm/GeV < ctDm−1
W̃±

≤ 0.04 cm/GeV).

We denote the number of events in each bin as nk (k = 1−4). Distributions of the variable

LT for samples in bins 1 − 4 are shown in Fig. 3. We can see that most of the charged

winos in the sample events decay within the TRT. Then, we compare nk (k = 1 − 4)

with the expected number of events estimated with the postulated lifetime τ . Expected

number of events in four bins are denoted as n̄k(τ) ∝ e−kdbin/cτ − e−(k+1)dbin/cτ , where dbin

is the width of the bins and is dbin = 2 cm. With nk and n̄k, we calculate the χ2 variable.

In order to use only the shape information of the distribution, we treat the normalization

as a free parameter, and the χ2 variable is defined as

χ2(τ) =
∑

k

[nk − N0n̄k(τ)]2

nk
=
∑

k

nk −
[
∑

k n̄k(τ)]2
∑

k [n̄2
k(τ)/nk]

, (6)
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Figure 4: The averaged value of the χ2 variable as a function of the postulated value of
the lifetime τ . Here, the χ2 variable is calculated with four bins with dbin = 2 cm (solid)
and 1.5 cm (dotted) with the luminosity of 100 fb−1. The input value of the lifetime of
the charged wino is cτW̃± = 5.1 cm.

where N0 is the normalization constant which minimizes χ2. The χ2 variable obtained

above fluctuates, depending on the set of event samples {nk}. In order to estimate the

typical uncertainty in the determination of the lifetime, we repeat the above process to

obtain the averaged value of χ2(τ) for each postulated value of τ .

The averaged value of χ2(τ) is shown in Fig. 4. The typical constraint on the lifetime

is estimated from δ〈χ2(τ)〉 ≡ 〈χ2(τ)〉 − 〈χ2〉min < 1 where 〈χ2〉min is the minimum value

of 〈χ2(τ)〉. (Notice that 〈χ2〉min ≃ 3, which is consistent with the expected value of the

χ2 variable with three degrees of freedom.) Then, we obtain the constraint 4.0 cm <

cτ < 5.7cm (or 0.020 cm/GeV < cτm−1
W̃±

< 0.029cm/GeV, if no information about the

wino mass is available). Thus, the lifetime is constrained with the uncertainty of about

10 − 20 %.

The best-fit value of the lifetime, which is cτbest ≃ 4.8cm, is smaller than the input

value of the lifetime. This is probably due to the fact that the number of events in higher

bins (in particular, that of 4th bin) are smaller than the expectation values from the

exponential distribution because only the events with LT < 100 cm are adopted (see Fig.
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Figure 5: Expected experimental and theoretical constraints on the wino mass vs. cτ
plane. The vertical band is the constraint on the wino mass using the velocity and
momentum information, while another band is from the bound on the wino lifetime as a
function of the wino mass. The dotted line is the theoretical prediction of the lifetime of
the wino (multiplied by the speed of light). The star at the center is the input point.

2). If we limit ourselves to the samples with smaller value of tD, the best-fit value of the

lifetime becomes closer to the input value. To see this, we also calculate the averaged

value of the χ2 variable with the four bins with the interval of 1.5 cm, instead of 2 cm,

and the result is also shown in Fig. 4. In this case, the best-fit value becomes 5.0 cm and

is closer to the input value. However, since the number of events decreases in this case,

the uncertainty becomes larger.

Finally, in Fig. 5, we summarize expected experimental constraints on the wino mass

vs. cτ plane. In the same figure, we also plot the theoretical prediction on the lifetime of

the wino as a function of the wino mass. We can see that, if the (short) charged wino

tracks can be identified with a sizable efficiency, we can provide an interesting test of the

anomaly-mediation model.
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4 Conclusions

In this letter, we have proposed a new procedure to test the anomaly-mediation model

in which only gauginos are kinematically accessible to the LHC. We have paid particular

attention to the study of the charged Wino, which is expected to behave as a short

charged track in the detectors. As we have discussed, the mass of the charged wino may

be determined from the velocity and momentum information while the information about

the lifetime of the charged wino may be obtained from the distribution of the travel length.

Combining these two, non-trivial test of the anomaly-mediation model may be possible.

Thus, we emphasize the importance of the search and the study of short charged tracks

using the TRT (and other detector components).

Here, we have concentrated on informations available from the charged Wino tracks

observed by the TRT. However, constraints on the gaugino masses (in particular, those on

the wino mass) is also obtained from the invariant-mass distribution of the jets produced

by the decay process of the gluino: g̃ → W̃qq̄ [12]. Such informations also provide

important and independent test of the anomaly-mediation model.

In this letter, possibility of determining the lifetime of the charged wino has been

discussed. However, we have not included any detailed detector effects in the present

analysis. In addition, we have assumed that the short charged track can be easily identified

irrespective of LT. In the realistic situation, however, more detailed understanding of the

efficiency to discover the short charged tracks is necessary. Such a study will be performed

elsewhere [14].
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