I. INTRODUCTION

The precise measurements of Z resonance properties at LEP and SLC have confirmed all relevant predictions of the Standard Model, and established a strong experimental basis for the mechanism of symmetry breaking in the electroweak sector. The two fundamental equations of electroweak unification,

\[
\sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} m_W^2 G_F}, \\
\cos^2 \theta_W = \frac{m_W^2}{m_Z^2 \rho_0},
\]

establish the relations between the strengths of the electromagnetic and weak couplings, and the mass ratio of the neutral and charged heavy vector bosons. Here \(G_F \) is the Fermi constant determined in muon decay, \(\alpha \) is the electromagnetic fine-structure constant, \(m_W \) and \(m_Z \) are the W and Z boson masses, and \(\theta_W \) is the electroweak mixing angle. The \(\rho_0 \) parameter is determined by the Higgs structure of the theory; in the Minimal Standard Model which we consider here, \(\rho_0 \) is unity. \(G_F, m_Z, \) and \(\alpha(m_Z^2) \) are known with relative precisions of \((1, 2 \text{ and } 40) \times 10^{-5} \). This allows the radiative corrections to Equations 1 and 2 to be investigated in considerable detail. These radiative corrections depend principally on the mass of the top quark, \(m_t \), and the Higgs boson, \(m_H \). One of the great strengths of the Z-pole data is that the measurements of the partial widths and charge asymmetries allow the effects of the Higgs and the top to be separated to a remarkable extent. The character of this separation is the primary topic of this paper.

Since the top has been observed directly, the agreement between the directly measured mass and its indirect measurement derived through the radiative corrections provides compelling evidence that the theoretical and experimental understanding of the Z-pole measurements rest upon firm ground. The much smaller effects due to \(m_H \) then provide essentially the only experimental knowledge we have concerning this elusive particle, apart from the fact that it has so far escaped direct observation.

The broad range of \(m_H \) still consistent with the measurements provides sufficient room for non-linear effects to become important. Such non-linearities mean that the gaussian error hypothesis, which is implicit in the \(\chi^2 \) fits used to determine the error contours of the Standard Model parameters, approximates the true errors only imperfectly. The actual errors and even the shape of the measurement constraints depend significantly on the working point of the fit in the multi-dimensional space describing the range accessible to the parameters. The character of the \(m_t, m_H \) separation therefore depends in an interesting manner on the “accidental” relations between the various measurements. Variations on the scale of the expected measurement uncertainties can, in some cases, lead to disproportionate shifts in the error contours. In other cases, the specific manner in which a measurement happens to lie within its band of uncertainty results in unanticipated stability. Some understanding of these subtle effects is necessary for a full appreciation of the measurements.

Since we are interested in describing how our knowledge is augmented by each individual measurement as well as sets of measurements in combination, we are led naturally to consider hypothetical situations which explicitly violate other constraints, which lie beyond the set of measurements being considered at any particular moment. Chief among the constraints we often ignore is the experimental lower limit on \(m_H \) provided by the di-
II. RADIATIVE CORRECTIONS

The largest radiative correction affecting the basic electroweak relations presented in the previous section is due to the running of the electromagnetic coupling constant in Equation 1. This running is due to the presence of fermion loops in the photon propagator, and is usually parametrized as:

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha(s)} \quad (3)$$

Near the Z-pole, leptons, the top quark, and the five light quarks contribute to $\Delta\alpha(s)$:

$$\Delta\alpha(s) = \Delta\alpha_{\text{ew}}(s) + \Delta\alpha_{\text{top}}(s) + \Delta\alpha_{\text{had}}(s) \quad (4)$$

The Z-pole data itself gives no useful constraints on $\Delta\alpha(s)$. The first two terms of Equation 4 can be precisely calculated, but $\Delta\alpha_{\text{had}}(s)$ is best determined by analyzing the measured rate of e^+e^- annihilation to hadrons using a dispersion relation. Where low-energy data dominates the resulting uncertainty. At LEP/SLC energies, α is increased from the Thompson limit of 1/137 to 1/128.945, corresponding to $\Delta\alpha_{\text{had}}(m_Z^2) = 0.02761 \pm 0.00036$. Combining Equations 1 and 2 and including radiative corrections yields:

$$\cos^2\theta_W \sin^2\theta_W = \frac{\pi\alpha(0)}{\sqrt{2m_Z^2 G_F}} \frac{1}{1 - (\Delta\alpha + \Delta r_w)} \quad (5)$$

where Δr_w represents further weak corrections. Equation 5 directly links $\Delta\alpha$ and Δr_w to the value of θ_W, and hence to m_W via Equation 2.

Radiative corrections also affect the couplings of the Z to fermions. The bulk of these corrections can be absorbed into an over-all scale factor for the couplings, ρ_f, and a scale factor, κ_f, for the electroweak mixing angle, resulting in “effective” quantities:

$$\rho_f = 1 + \Delta\rho_{\text{se}} + \rho_f \quad (6)$$

$$\kappa_f = 1 + \Delta\kappa_{\text{se}} + \kappa_f \quad (7)$$

$$\sin^2\theta_W^f = \kappa_f \sin^2\theta_W \quad (8)$$

$$g_{\text{V}} = \sqrt{\rho_f} (T_f^3 - 2Q_f \sin^2\theta_W^f) \quad (9)$$

$$g_{\text{A}} = \sqrt{\rho_f} T_f^3 \quad (10)$$

Here T_f^3 is the third component of weak isospin, Q_f is the charge, θ_W^f is the effective electroweak mixing angle, and g_{V} and g_{A} are the effective vector and axial-vector couplings for the fermion species f. The quantities $\Delta\rho_{\text{se}}$ and $\Delta\kappa_{\text{se}}$ are universal corrections arising from the propagator self-energies, while $\Delta\rho_f$ and $\Delta\kappa_f$ are flavor-specific vertex corrections. The effective couplings g_{V} and g_{A} are purely real, and describe that part of the Z interaction which can be treated as a resonance in the Improved Born Approximation. The remaining, complex parts, termed “ remnants”, generate effects which are small compared to the experimental errors, but are nevertheless respected when determining g_{V} and g_{A} from the data (see, for example 13).

The Z partial width to each fermion species, Γ_f, is proportional to ρ_f, while $\sin^2\theta_W$ is proportional to κ_f. Calculations at one-loop order illustrate the essential m_t and m_H dependencies, which are quadratic in m_t and logarithmic in m_H. The dependence of $\Delta\kappa_{\text{se}}$ remains the same over the entire range of m_H:

$$\Delta\kappa_{\text{se}} = \frac{3G_F m_W^2 m_f^2 \cos^2\theta_W}{8\sqrt{2\pi}^2} - \frac{10 G_{\text{V}} m_W^2}{3} \frac{\ln m_H^2}{m_W^2} \left(\frac{5}{6}\right) + \cdots \quad (11)$$

For $\Delta\rho_{\text{se}}$, the sign of the dependence on $\ln(m_H)$ is negative for $m_H \gg m_W$:

$$\Delta\rho_{\text{se}} = \frac{3G_F m_W^2 m_t^2}{8\sqrt{2\pi}^2} - \frac{3G_{\text{V}} m_W^2}{8\sqrt{2\pi}^2} \frac{\sin^2\theta_W}{\cos^2\theta_W} \left(\frac{\ln m_H^2}{m_W^2} - \frac{5}{6}\right) + \cdots \quad (12)$$

and positive for $m_H \ll m_W$:

$$\Delta\rho_{\text{se}} = \frac{3G_F m_W^2}{8\sqrt{2\pi}^2} m_t^2 + \frac{G_{\text{V}} m_W^2}{8\sqrt{2\pi}^2} \ln \frac{m_H^2}{m_W^2} - \frac{7G_{\text{V}} m_H m_Z}{8\sqrt{2\pi}} \cdots \quad (13)$$

Equation 8 shows that $\sin^2\theta_W^f$ receives radiative corrections from both Δr_w, through $\sin^2\theta_W$, and from $\Delta\kappa_{\text{se}}$ directly. These corrections act along the same axis in the m_t vs $\ln(m_H)$ plane, but in opposite senses due to the near equality, in single-loop approximation:

$$\Delta\kappa_{\text{se}} = -\Delta r_w + \cdots \quad (14)$$

In the m_t vs $\ln(m_H)$ plane lines of constant $\Delta\kappa_{\text{se}}$ and Δr_w, and hence m_W and $\sin^2\theta_W^f$ are therefore all approximately parallel. When moving along such lines, then, changes in the radiative effects of the top and the Higgs are seen to cancel. It is only through violations of this approximation that measurements of m_W and $\sin^2\theta_W^f$ have any power to separate the effects of m_t and m_H. A related complication in the analysis arises from what may be an historical accident. Due to the early and continued non-observation of the Higgs at LEP, the two most precise electroweak programs, ZFITTER and TOPAZ0, do not include the effects of external Higgs emission from the Z propagator. Since the Z-pole measurements in fact favor the early and continued non-observation of the Higgs at LEP [3, 4, 5, 6, 7, 8] and TOPAZ0 [9, 10, 11, 12], do not
The fact that Δr_w and $\Delta \kappa_{\text{se}}$ oppose each other in Equation (8) reduces the sensitivity of $\sin^2 \theta_{\text{eff}}$ to the corrections. The effect of Δr_w is larger, so that changes in $\sin^2 \theta_{\text{eff}}$ are of the same sign as those in $\sin^2 \theta_W$, but are a factor of $\sin^2 \theta_W / \cos^2 \theta_W$ smaller in magnitude [17], which is about 0.3.

Since $\sin^2 \theta_W$ is present in the dominant, m_t, term of Equation (11) but absent in the corresponding terms of Equations (12) and (13) the effects of $\Delta \alpha_{\text{had}}(m_Z^2)$ are felt in $\Delta \kappa_{\text{se}}$, but $\Delta \rho_{\text{se}}$ is well isolated. The uncertainty in $\Delta \alpha_{\text{had}}(m_Z^2)$ therefore dilutes the inherent precision of the $\sin^2 \theta_{\text{eff}}$ measurements, but not those of the partial widths.

Similarly, the weak effects of Δr_w are felt undiluted in m_W, so that the relative effect of $\Delta \alpha$ is much smaller there than it is for $\sin^2 \theta_{\text{eff}}$, where about 0.7 of the weak corrections are canceled through $\Delta \kappa_{\text{se}}$.

The flavour dependence of the radiative corrections is very small for all fermions, except for the b quark, where vertex corrections are significant due to the large mass splitting between the bottom and top quarks [18], resulting in:

$$\Delta \rho_b = - \frac{G_F m_t^2}{2 \sqrt{2} \pi^2} + \cdots. \quad (15)$$

Notice that $\Delta \rho_b$ has no Higgs dependence, making the quantity $R_0^b = \Gamma_{\text{had}} / \Gamma_{\text{had}}$ a straight-forward indicator of m_t, since the m_t dependence entering through $\Delta \rho_{\text{se}}$ cancel in numerator and denominator.

III. Z-pole CONSTRAINTS ON m_t AND m_{H}

As Z-pole input data we consider the set listed in Table 16.1 of reference [19], which consists of $\Delta \alpha_{\text{had}}(m_Z^2)$, plus the 14 Z-pole measurements: m_Z, Γ_Z, σ_b^0, R_0^ℓ, A_{FB}, $A_\ell (P_\tau)$, $A_\ell (\langle Q_{\text{FB}} \rangle)$, A_{ℓ} (SLD), R_0^b, R_0^0, $A_{\ell}^{0,b}$, $A_{\ell}^{0,c}$, A_{ℓ}, and A_{FB}, including their error correlations. We perform Standard Model fits [27] to this data, using ZFITTER 6.36 to predict the observables as a function of the five free parameters: $\Delta \alpha_{\text{had}}(m_Z^2)$, m_Z, α_S, m_t, and m_{H}.

To illustrate the constraints imposed by these measurements, it is useful to group them according to their functional roles. Two quantities, $\Delta \alpha_{\text{had}}(m_Z^2)$ and m_Z, appear as both input data and fit parameters. The electromagnetic coupling, parametrized through $\Delta \alpha_{\text{had}}(m_Z^2)$, is determined externally [13] and passes through the Z-pole fit as an inert ingredient. Similarly, m_Z is determined with such precision that it is incapable of being pulled by its dynamic relation to other quantities. Both might just as well have been treated as external constants, like G_F. The b- and c-quark asymmetry parameters, A_b, and A_c are also inert in the fit, since they have essentially no dependence on the Standard Model parameters.

The three measurements Γ_Z, σ_b^0, and R_0^ℓ are equivalent to the more meaningful, but more correlated quantities $\Gamma_{\ell \ell}$, Γ_{had} and $\Gamma_{\text{inv}} / \Gamma_{\ell \ell}$. Of these, the latter is insensitive to variations in the Standard Model Parameters, and serves to measure the number of light neutrino generations. The strong coupling constant, α_S, is determined by its effect on the hadronic width, Γ_{had}, leaving $\Gamma_{\ell \ell}$ as the key quantity in constraining $\Delta \rho_{\text{se}}$. The small size of $g_{\ell \ell}$ compared to $g_{\alpha \ell}$ (see Equation (16) makes $\Gamma_{\ell \ell}$ essentially independent of $\sin^2 \theta_{\text{eff}}$.

As already discussed in connection with Equation (16), R_0^b serves as a direct indicator of m_t. The role of R_0^b is diffuse and non-critical.

The six remaining measurements, $A_{\text{FB}}^{0,b}$, A_{ℓ} (P_τ), $\sin^2 \theta_{\text{eff}} (\langle Q_{\text{FB}} \rangle)$, A_ℓ (SLD), $A_{\ell}^{0,b}$, and $A_{\ell}^{0,c}$ serve to determine the single quantity $\sin^2 \theta_{\text{eff}}$. Although there is a disturbing lack of consistency between the values of $\sin^2 \theta_{\text{eff}}$ derived from the two most precise measurements, A_ℓ (SLD) and $A_{\text{FB}}^{0,b}$, the discrepancy ($\sim 2.9 \sigma$) between them appears to elude explanation. Within the Standard Model all six of these measurements, and particularly the two most precise, appear to be valid and well-defined measurements of $\sin^2 \theta_{\text{eff}}$.

Both measurements claim to be dominated by statistical uncertainties. The measurements of $A_{\text{FB}}^{0,b}$ are complex, but the level of agreement between the independent analyses of the four LEP Collaborations is excellent. Common QCD corrections play a role, but are believed to be well understood. The SLD measurement [20] of A_ℓ through A_{ℓ}, the asymmetry between the interaction rate for right- and left-handed electron beam polarizations, is both simple and elegant. The least implausible source of systematic error, in the measurement of the beam polarization, is believed to be small and well-controlled.

Here we investigate the consequences of excluding either A_ℓ (SLD) or $A_{\text{FB}}^{0,b}$ from the fit, but we make no attempt to choose between them. Either exclusion option restores acceptable consistency to the set of $\sin^2 \theta_{\text{eff}}$ measurements, but obviously introduces a bias.

The constraints on m_t and m_{H} imposed by the 14 Z-pole measurements can therefore be almost completely expressed in terms of the three quantities:

$$\Gamma_{\ell \ell} \text{ - related directly to } \Delta \rho_{\text{se}}$$

$$\sin^2 \theta_{\text{eff}} \text{ - related directly to } \Delta \kappa_{\text{se}}, \text{ and}$$

$$R_0^b \text{ - related directly to } m_t.$$
plotted are measurement constraint bands, which show the contribution of each measurement. These are plotted by finding the curves in the m_t vs $\log_{10}(m_H/\text{GeV})$ plane where the predicted value of the measured quantity equals the central value of the measurement $\pm 1\sigma$. Note that since each of these bands indicate the constraint imposed by a fixed measurement, they exhibit exactly the inverse parameter dependence compared to the Standard Model prediction for the measured quantity.

The diagonal band in Figure 1 indicates the $\pm 1\sigma$ constraint from the $\sin^2 \theta_W$ measurements. Higher-order electroweak corrections do not significantly affect the linear relationship expected from the lowest-order terms, and the slope of this band is approximated by the ratio of coefficients of m_t^2 and $\ln(m_H)$ in the expression for $\Delta \kappa_{\text{sec}}[28]:$

$$\left. \frac{dm_t}{d\ln(m_H)} \right|_{\kappa_{\text{sec}}} = \frac{10 m_Z^2 \sin^2 \theta_W}{9 m_t}. \quad (16)$$

The banana-shaped band in Figure 1 shows the $\pm 1\sigma$ constraint from the Γ_{eff} measurement. The slope of this band at large $\log_{10}(m_H/\text{GeV})$ agrees reasonably with the linear relation expected from the ratio of coefficients in the lowest-order expression for $\Delta \rho_{\text{sec}}$ in this region:

$$\left. \frac{dm_t}{d\ln(m_H)} \right|_{\rho_{\text{sec}}} = \frac{m_Z^2}{m_t} \sin^2 \theta_W. \quad (17)$$

Also at low $\log_{10}(m_H/\text{GeV})$ the slope, now negative, agrees with the lowest-order expression given in Equation [10]:

$$\left. \frac{dm_t}{d\ln(m_H)} \right|_{\rho_{\text{sec}}} = -\frac{2 m_Z^2}{3 m_t}. \quad (18)$$

Due to the fact that R_0^b is controlled by vertex corrections determined by the $t-b$ mass-splitting, its measurement provides a constraint on m_t almost independent of $\log_{10}(m_H/\text{GeV})$, as shown by the broad horizontal band in Figure 1 (also $\pm 1\sigma$).

The central ellipse in Figure 1 shows the 68% CL contour for the Standard Model fit to all Z-pole measurements. The dominant role played by $\sin^2 \theta_W^{\text{lept}}$ in determining the minor axis is evident, and the turn-over of the Γ_{eff} banana provides the lower bound of the major axis. The R_0^b measurement provides the upper bound. If the R_0^b constraint is removed, the fit in fact no longer yields a 68% CL upper limit for m_H or m_t.

The other two ellipses in Figure 1 show similar fit contours when either A_{LR} or the $A_{FB}^{0,b}$ measurements are excluded from the fit. The noticeable shrinkage of the major axis in the case when the $A_{FB}^{0,b}$ measurement is dropped is due to the fact that the $\sin^2 \theta_W^{\text{lept}}$ constraint then begins to move around the corner of the Γ_{eff} banana. If the $\sin^2 \theta_W^{\text{lept}}$ measurement moved even lower in m_H, the $\sin^2 \theta_W^{\text{lept}}$ and Γ_{eff} constraints would become almost perpendicular, eliminating the usual $m_t - \log_{10}(m_H/\text{GeV})$ error correlation.

The agreement of the indirect measurement of m_t from the Z-pole measurements alone with the direct measurement made in $p p$ collisions [21] ($m_t = 174.3 \pm 5.1$ GeV) is an important experimental confirmation of the validity of electroweak corrections. The remarkable stability of the indirect measurement’s central value under shifts in $\sin^2 \theta_W^{\text{lept}}$ can be seen to result from a complex interplay between the relatively weak constraint from R_0^b, which happens to lie low, and the exact relation between the $\sin^2 \theta_W^{\text{lept}}$ measurement band and the position of the Γ_{eff} corner.

The arrow in Figure 1 shows how the $\sin^2 \theta_W^{\text{lept}}$ measurement band would shift under a $\pm 1\sigma$ change in the $\Delta \rho_{\text{sec}}(m_Z^2)$ determination. Only the $\sin^2 \theta_W^{\text{lept}}$ measurement is significantly sensitive to $\Delta \rho_{\text{sec}}(m_Z^2)$ on the scale of the current errors, making the effective width of the $\sin^2 \theta_W^{\text{lept}}$ measurement band in the m_t vs m_H plane about 50% wider than the band shown, which corresponds to $\Delta \rho_{\text{sec}}(m_Z^2)$ fixed at its central value.

The effect of applying the constraint of the direct m_t measurement [21] can easily be visualized by imagining a horizontal band at $m_t = 174.3 \pm 5.1$ GeV. Notice that at the operating point of the Z-pole fit, the direct m_t
measurement essentially surplants not only R^0_b, but also the constraints provided by $\Gamma_{\ell\ell}$.

It is perhaps interesting to remark on the fact that all measurements are compatible with the broad $\Gamma_{\ell\ell}$ extremum in $\log_{10}(m_{1\ell}/\text{GeV})$. Only the failure to find direct production of the Higgs at LEP II indicates nature’s choice to lie on the $\Gamma_{\ell\ell}$ upper branch.

B. Additional Constraints from m_W

Direct measurements of m_W also provide important constraints on the Standard Model parameters through the electroweak corrections Δx_w. The high precision of the m_Z measurement means that the constraint imposed on $\sin^2 \theta_W$ through Equation 2 is effectively limited only by the measurement uncertainty in m_W. Although further precision on m_W, from both LEP II [10] and the Tevatron [22] can be expected, the available combined result, $m_W = 80.426 \pm 0.034 \text{ GeV}$ [10] is already sufficient to provide constraints on m_t and m_H which are comparable in precision to those derived from the Z-pole alone. The approximate equivalence $\Delta x_w \approx -\Delta \phi_{\text{res}}$ of Equation 13 becomes less exact towards small values of m_H, so that the direct m_W measurements allow some separation of Higgs and top effects when combined with the Z-pole measurement of $\sin^2 \theta_{\text{eff}}$.

The diagonal m_W band in Figure 2 shows the constraint from the preliminary direct measurements of m_W. The flattening of its slope at low values of m_H, and the fact that it happens to lie relatively higher in m_t than the $\sin^2 \theta_{\text{eff}}$ band, leads to a clear divergence of the two measurement bands at low m_H.

Compared to the solid error contour of the Z-pole fit without m_W, which is shown again in Figure 2, the dashed error contour which includes the m_W measurements is displaced along the converging m_W and $\sin^2 \theta_{\text{eff}}$ measurement bands like the slider of a zipper towards larger values of m_t and m_H. This demonstrates that the m_W measurement provides a stronger lower bound along this axis than does $\Gamma_{\ell\ell}$.

The contour including m_W is also displaced perpendicularly and is therefore more compatible with the lower value of $\sin^2 \theta_{\text{eff}}$ derived from A_{LR} than the higher value favored by A_{FB} [see Figure 1].

Without constraining m_t it is the first displacement, parallel to the $\sin^2 \theta_{\text{eff}}$ band which dominates, and the addition of m_W shifts the favored range for m_H upwards, as already mentioned, with respect to the Z-pole-only fit.

When the direct measurement of $m_t = 174.3 \pm 5.1$ GeV is imposed at the outset, however, not only is m_H constrained more tightly, but the second, perpendicular displacement of the error ellipse then dominates, and the addition of m_W shifts the favored range for m_H downwards, rather than upwards.

FIG. 2: m_t and m_H constraints from Z-pole measurements and m_W. Each band gives the $\pm 1\sigma$ constraint from the indicated measurement. The \pm signs on each band show the sense of variation in the measurement. The arrow indicates the additional variation in $\sin^2 \theta_{\text{eff}}$ due to a $\pm 1\sigma$ uncertainty in $\Delta \phi_{\text{res}}(m_Z^2)$. The error contours are shown at 68% CL for fits to both the Z-pole results alone (solid), and the Z-pole results combined with m_W (dashed).

IV. HIGGSSTRAHLUNG

Since direct searches for the Higgs have demonstrated that $m_H > 114$ GeV at 95% CL [2], Figures 1 and 2 and Equation 13 follow the precision calculations of ZFITTER and TOPAZ0 in neglecting the Higgsstrahlung process shown in Figure 3. However, the decrease of $\Delta \rho_{\text{res}}$ at low m_H predicted by Equation 13 is due to the effect of

![Higgsstrahlung Diagram](https://example.com/higgsstrahlung.png)
where the Standard Model Higgsstrahlung would dominate the Z-pole analysis. In order to incorporate the effects of such Higgsstrahlung into the Z-pole analysis, we re-interpret the experimental measurements, which we consider to include Higgsstrahlung, in terms of the theoretical quantities as calculated by ZFITTER, without Higgsstrahlung. In the case of the total width this is particularly straightforward:

$$\Gamma_Z^{\text{meas}} = \Gamma_Z^{\text{zf}} + \Gamma_Z^{\text{hs}}$$

where the superscripts have the obvious meanings: zf = ZFITTER, meas = measured, hs = Higgsstrahlung. Here $$\Gamma_Z^{\text{zf}} = \Gamma(Z \rightarrow H \bar{f} f)$$, summed over all fermion species, is calculated according to Equation 19. Since $$\Gamma_Z$$ is the resonance width of the Z, determined by the decay lifetime and the uncertainty principle, its measurement is entirely independent of any details of the experimental event selection and analysis.

The manner in which the measurement of the partial widths will be affected is less obvious. Although experimental details differ among the four LEP collaborations, we take OPAL as a representative experiment [23], and study how Higgsstrahlung would have affected the measurements. Although it would be better to pursue these studies using detailed simulations of all four experiments, the precision which is necessary is sharply reduced by a very simple consideration: any Higgsstrahlung events classed as hadronic Z decays will simply increase the apparent value of $$\alpha_S$$, and will otherwise not affect the analysis. This is the case since, while $$\Gamma_{\text{had}}$$ and $$\Gamma_{\ell\ell}$$ share the same propagator corrections through $$\Delta_{\text{had}}$$, final-state QCD radiation increases the hadronic width alone by the factor $$R_{QCD}$$:

$$R_{QCD} = 1 + \frac{\alpha_S}{\pi} + \cdots$$

Any shift in the $$\Gamma_{\text{had}}/\Gamma_{\ell\ell}$$ ratio is therefore interpreted by the fit as a change in $$\alpha_S$$.

All four LEP experiments followed the natural strategy of essentially, if not formally, accepting all Z decays as hadronic unless they passed the stringent requirements to be identified as one of the three species of leptons. To an excellent approximation all Higgsstrahlung events in which the $$Z^*$$ decays hadronically will remain classed as hadronic events. Since the dominant branching fraction of the Higgs in the relevant mass range is to $$b\bar{b}$$, many other Higgsstrahlung events, except for very low values of $$m_H$$, will also appear to be hadronic decays.

To clarify the experimental classification of the Higgsstrahlung events in which the $$Z^*$$ decays leptonically we studied samples of fully simulated Higgsstrahlung events in the OPAL detector. These samples were generated using the program HZHA-03 [24], including all accessible Higgs decays according to the Standard Model, and covered the $$Z^*$$ decay channels $$e^+e^-$$, $$\mu^+\mu^-$$ and $$\nu\bar{\nu}$$. Since $$Z^*$$ decays to $$\tau^+\tau^-$$ were not available, we treated these as an average of $$e^+e^-$$, $$\mu^+\mu^-$$.

We have therefore undertaken calculations which account for the effects of the expected Higgsstrahlung at low $$m_H$$.

FIG. 4: $$\Gamma_Z$$ vs $$\log_{10}(m_H/\text{GeV})$$, including and excluding external Higgsstrahlung.

And $$m_H$$ is the invariant mass of the $$Z^*$$ decay products. The Higgsstrahlung of Equation [14] represents extra width for Z decay, which is not included in ZFITTER. Figure III shows the total width of the Z with and without this external Higgsstrahlung. At values of $$m_H$$ below have been appreciable, representing on the order of an MeV in the Z decay width.
For each Z^* decay channel, as a function of m_H, we calculated the probability that the Higgsstrahlung events would be classified as hadronic Z decays. If an event failed the hadronic selection, we assumed that it would be classified correctly according to the actual Z^* decay. Since the Standard Model assumes lepton universality, any cross-over between charged lepton channels would in any case be irrelevant.

We then calculated, as a function of m_H, two fractions:

The fraction of Higgsstrahlung events, $F_{h_\ell}(m_H)$, in which the Z^* in fact decayed to charged leptons, but the event was identified as an hadronic Z decay.

The fraction of Higgsstrahlung events, $F_{h_{\nu \nu}}(m_H)$, in which the Z^* in fact decayed to neutrinos, but the event was identified as an hadronic Z decay.

Figure 5 displays these fractions along with a smooth function fitted to represent the Monte Carlo data.

![Figure 5](image)

FIG. 5: As a function of m_H, the fractions of Higgsstrahlung events where the Z^* in fact decayed, respectively, to charged leptons or neutrinos, but the event was identified as an hadronic Z decay.

We then calculate the measured partial widths, including the effects of Higgsstrahlung, using the smooth $F_{h_{\nu \nu}}$ functions:

$$
\Gamma_{\text{meas}}^{\nu \nu} = \Gamma_{\text{h}}^{\nu \nu} + F_{h_{\nu \nu}}(m_H) \Gamma_{h_{\ell}}^{\nu \nu} + F_{h_{\ell}}^{\nu \nu}(m_H) \Gamma_{h_{\ell}}^{\nu \nu}.
$$

(25)

$$
\Gamma_{h_{\ell}} = \Gamma_{h_{\ell}}^{\nu \nu} + [1 - F_{h_{\nu \nu}}(m_H)] \Gamma_{h_{\ell}}^{\nu \nu}.
$$

We take the effect of Higgsstrahlung on the measurement of $\sin^2 \theta_{\text{eff}}$ to be negligible. Clearly there is no effect on the SLD measurement of A_L, since it concerns only the initial state. Similarly, there can be no effect on the average τ polarization. The asymmetry measurements have a relative precision of at best a few percent, and any possible dilution of the asymmetry due to kinematic distortions in the few 10^{-3} fraction of Higgsstrahlung events will not be significant.

With the relations of Equations 25 and 26, we then re-made the plot of Figure 4 using ZFITTER to calculate the measurement error bands and 68% CL contours for the re-interpreted measurements. The result is shown in Figure 6. Notice that the only visible change is the expected decrease in the slope of the $\Gamma_{h_{\ell}}$ measurement band at low m_H, due to failure of some leptonic Higgsstrahlung events to be identified as hadrons. The lower extremity of the 68% CL contour for the fit which drops the $A_{FB}^{\nu \nu}$ measurement extends very slightly, reflecting the local shift in the $\Gamma_{h_{\ell}}$ constraint. The lower 1-sigma error on m_t is only 2.4% larger than it was when Higgsstrahlung was ignored. As a test of our procedures, we also carried out the same calculations assuming that all Higgsstrahlung was accepted as hadronic Z decay. As expected, the resulting plot was indistinguishable from Figure 4.

![Figure 6](image)

FIG. 6: m_t and m_H constraints from Z-pole measurements with Higgsstrahlung taken into account. Each band gives the $\pm 1\sigma$ constraint from the indicated measurement. The arrow indicates the additional variation in $\sin^2 \theta_{\text{eff}}$ due to a $\pm 1\sigma$ uncertainty in $\Delta a_{\mu}^{(5)}(m_Z^2)$. The ellipses give the 68% CL fit contours for the indicated data.

In order to quantify the effect on α_S of Higgsstrahlung being identified as hadronic Z decay, we performed a series of four-parameter fits, with α_S, $\alpha(m_Z^2)$, m_Z, and m_t free, for a series of fixed m_H values. We plot the 1-sigma error bands of α_S as a function of $\log_{10}(m_H/\text{GeV})$ in Figure 7, showing how α_S shifts to compensate for the Higgsstrahlung which is identified as hadronic Z decay. Since $\Gamma_{h_{\ell}}^{\nu \nu}$, the hadronic width as re-interpreted for ZFITTER, is reduced from the fixed measured value, $\Gamma_{\text{h}}^{\nu \nu}$, by the Higgsstrahlung contribution, the hadronic final-state correction appears smaller, and the fit value of α_S is reduced as m_H becomes small.
The $R^0_{b\tau}$ measurement band remains unchanged in Figure 8 since we have assumed the Higgsstrahlung events identified as hadrons do not disturb the quark flavor balance. Actually, since the Higgs decays predominantly to $b\bar{b}$, it is likely that Higgsstrahlung will increase $\Gamma_{b\bar{b}}$ proportionally more than the width of other flavors. A complete heavy flavor analysis was beyond the scope of this study, so we considered the limiting case that all Higgsstrahlung events where the Higgs decays to $b\bar{b}$, and which are identified as hadrons, contribute to $\Gamma_{b\bar{b}}$:

$$\Gamma_{b\bar{b}}^\text{meas} = \Gamma_{b\bar{b}}^\text{ref} + \text{BR}(\text{Higgs} \rightarrow b\bar{b}) \times \left[\Gamma_{b\bar{b}}^\text{had}(m_H)\Gamma_{\ell\ell}^\text{had} + \Gamma_{b\bar{b}}^\text{inv}(m_H)\Gamma_{\ell\ell}^\text{inv} \right].$$ (28)

The result is shown in Figure 8.

The resulting dramatic upturn in the $\Gamma_{b\bar{b}}$ measurement band flattens the lower extremity of the 68% CL contour for the Z-pole fit in which the A^0_{FB} measurement is dropped, but only modestly. The lower 1-sigma error on m_t for this fit is 11% smaller than it was when Higgsstrahlung was ignored. The corresponding shift in the lower 1-sigma error on m_t for the base fit including all Z-pole measurements is only 1.7%. Other aspects of the error contours remain numerically unaffected.

V. CONCLUSIONS

Our study of the manner in which the Z-pole measurements constrain the Standard Model parameters m_t and m_H through their effect on radiative corrections shows that the measured leptonic width, $\Gamma_{\ell\ell}$ plays an important, and non-linear role. This non-linearity at low values of m_H contributes to a surprising stability in the agreement between the direct and indirect measurements of m_t under variations in $\sin^2 \theta^\text{ lept}_{\text{eff}}$. This singular demonstration of the consistency of our experimental and theoretical understanding of electroweak radiative corrections therefore remains undisturbed by the apparent discrepancy between the values of $\sin^2 \theta^\text{ lept}_{\text{eff}}$ derived from the measurements of A^0_{FB} and A_{LR}.

The neglect of external Higgsstrahlung in ZFITTER and TOPAZ0 in the analysis the Z-pole measurements is found to have negligible impact on the central values of all the extracted Standard Model parameters, with the exception of α_s. Within a CL of 68% the error contours of these parameters also remain essentially unaffected.
Acknowledgements

We would like to thank F. Jegerlehner, P. Gambino, and members of the LEP Electroweak Working Group for useful discussions. We also wish to thank the OPAL Collaboration, of which we are both members, for access to detector-level Monte-Carlo simulations of the Higgsstrahlung process. In addition to the support staff at our own institutions we are pleased to acknowledge the Department of Energy, USA, Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and a grant under the MEXT International Science Research Program, Japanese Society for the Promotion of Science (JSPS).

[22] Combination of CDF and DØ Results on W Boson Mass and Width, Tevatron Electroweak Working Group and the CDF and DØ Collaborations, CDF Note 5888, DØ Note 3963, FERMILAB-FN-0716, July 2002.
[26] Our results are equivalent to those described in [19]. The resulting numerical values for the Standard Model parameters can be found in Table 16.2 of that reference.
[27] the A0b measurements are not yet final
[28] Note that the success of this approximation relies on \Delta r^w remaining constant along lines of constant sin^2\theta_{lep}^{eff}, as mentioned in the text discussing Equation [11].