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We study masses of the top-quark and the Higgs boson in the top mode standard model with
extra dimensions, where the standard model gauge bosons and the third generation of quarks and
leptons are put in D(= 6, 8, 10, · · · )-dimensions. We analyze the most attractive channel (MAC) by
using the renormalization group equations (RGEs) of the gauge couplings. The binding strength
of the MAC, of course, should exceed the critical binding strength for the dynamical electroweak
symmetry breaking (DEWSB). We can determine the effective cutoff as the energy scale where the
DEWSB takes place. We then find that the tau-condensation is favored in the minimal model with
D = 6, while the top-condensate can be the MAC in models with D = 8 and D = 10. Combining
RGEs for the top-Yukawa and Higgs-quartic couplings with the compositeness conditions, we can
predict the top-quark mass mt and the Higgs boson mass mH , mt = 172−177 GeV, mH = 179−202
GeV for D = 8, and mt = 166 − 172 GeV, mH = 181 − 216 GeV for D = 10, where we took the
universal compactification scale 1/R = 1 − 100 TeV. Our predictions for mt are successful and our
Higgs boson can be observed at collider experiments in near future.

PACS numbers: 11.15.Ex,11.10.Kk,11.25.Mj,12.60.Rc

I. INTRODUCTION

The gauge interaction properties of the Stan-
dard Model (SM) have been confirmed quite pre-
cisely in the last decade. However, the Higgs par-
ticle has not yet been discovered in spite of much
effort. The physics behind the electroweak sym-
metry breaking (EWSB) and the origin of masses
of quarks and leptons are left as unresolved prob-
lems. The idea of the top quark condensate [1, 2]
explains naturally the large top-quark mass of
the order of the EWSB scale. This model is often
called the “top mode standard model” (TMSM),
because the scalar bound state of t̄t plays the role
of the Higgs boson in the SM.

In the original version of the TMSM, the 4-top-
quark interaction is introduced by hand in order
to trigger the EWSB. In addition, the top quark
mass mt is predicted about 10%–30% larger than
the experimental value, even if we take the ultra-
violet (UV-) cutoff (or the compositeness scale)
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to the Planck or the GUT scale [1, 3, 4]. Such a
huge cutoff also causes a serious fine-tuning prob-
lem. For a recent comprehensive review of the
top-quark condensation, see, e.g., Ref. [5].

Recently, Arkani-Hamed, Cheng, Dobrescu,
and Hall (ACDH) [6] proposed an interesting ver-
sion of the TMSM in extra dimensions in the
spirit of large scale compactification scenario [7]:
The SM gauge bosons and the third generation
of quarks and leptons live in the D(= 6, 8, · · · )-
dimensional bulk, while the first and second gen-
erations are confined in the 3-brane (4 dimen-
sions). Since gauge couplings in higher dimen-
sions than four have negative mass dimension,
scattering amplitudes in the bulk at the tree level
approximation reach the unitarity bound in a
certain high-energy region. Namely, bulk gauge
interactions become naively non-perturbative in
the high-energy region. Thus, the bulk QCD
can trigger the top-condensation without adding
4-fermion interactions in the bulk, in contrast
to the original version of the TMSM. However,
ACDH did not analyze concretely the dynam-
ics of the bulk QCD. Since we can find eas-
ily that the bulk QCD coupling has an upper
bound within the same MS scheme of the trun-



cated Kaluza-Klein (KK) effective theory [8, 9] as
that ACDH was based on, it is quite non-trivial
whether the top-condensation actually realizes or
not. [10] Thus, we have studied the dynamical
chiral symmetry breaking (DχSB) and the phase
structure in vector-like gauge theories with ex-
tra dimensions in the previous papers [10, 11].
We then found that the simplest version of the
ACDH scenario with D = 6 is unlikely to work,
because the bulk QCD coupling cannot become
sufficiently large to trigger the top-condensation
in the case of D = 6 and ng = 1, where ng de-
notes the number of generations in the bulk. In
addition, we showed that the top-condensation
can be realized in the case of D = 8 and ng = 1
within the analysis including only the effect of
the bulk QCD.

In this paper, we predict the masses of the top
quark (mt) and the Higgs boson (mH) in the ap-
proach á la Bardeen, Hill, and Lindner [3] based
on RGEs and the compositeness conditions. Al-
though we have taken into account only the effect
of the bulk QCD in the previous works, we make
analysis including 1-loop effects of all SM gauge
bosons in the bulk. Our scenario works when
the top-condensate is the most attractive chan-
nel (MAC) [12] and its binding strength κt at
the cutoff Λ exceeds the critical binding strength
κcrit
D at the same time,

κt(Λ) > κcrit
D > κb(Λ), κτ (Λ), · · · , (1)

where κb and κτ denote the binding strengths
of the bottom-, and tau-condensates, respec-
tively. We assume that values of κcrit

D are not
so much changed from previously estimated ones
in Ref. [10, 11], even if we incorporate all SM
gauge bosons. In our approach, we can deter-
mine the cutoff Λ as the energy scale where the
top-condensation takes place. Thus, we can also
predict the mass of the top-quark as well as the
Higgs boson mass, in sharp contrast to the ear-
lier approaches of ACDH [6] and Kobakhidze [13]
where the cutoff Λ is treated as an adjustable
parameter. We also find that the DχSB takes
place in the energy scale close to the Landau
pole of the bulk U(1)Y interaction. When the
bulk U(1)Y interaction becomes quite large, of
course, the tau-condensation is favored, instead
of the top-condensation. Although ACDH an-
alyzed the MAC under the assumption that all
gauge couplings in the bulk are equal, it is ob-
viously insufficient in the above situation. We
thus reanalyze more precisely the MAC by us-
ing RGEs of gauge couplings. We then find that
the tau-condensation is favored in the model with
D = 6, ng = 1, while the top-condensate can

be the MAC in models with D = 8, 10, ng = 1.
We solve RGEs for the top-Yukawa and Higgs-
quartic couplings with the compositeness condi-
tions at the effective cutoff where the top-quark
in the bulk condenses. We then obtain the top
quark mass and the Higgs boson mass,

mt = 172−177 GeV, mH = 179−202 GeV (2)

for D = 8, ng = 1, and

mt = 166−172 GeV, mH = 181−216 GeV (3)

for D = 10, ng = 1, where we took the universal
compactification radius R−1 = 1 − 100 TeV and
the error range of the strong coupling constant as
α3(MZ) = 0.1172±0.0020 [14]. We also find that
the value of mt at 1/R is governed by the quasi
infrared fixed point (IR-FP) for the top-Yukawa
coupling y∗ [15, 16], which is approximately ob-
tained as y∗ = g3 ·

√
CF (6 + δ)/(2δ/2Nc) with the

number of color Nc(= 3), the quadratic Casimir
of the fundamental representation CF (= 4/3),
and δ ≡ D − 4. The suppression factor 2δ/2 in
y∗ arises from 1-loop corrections of the bulk top-
quark to the wave function renormalization con-
stant of the composite Higgs field. The conden-
sation of the bulk top-quark is thus essential so
as to obtainmt = 170−180 GeV. This is a reason
why we can resolve the problem of mt>∼ 200 GeV

by extending the TMSM into extra dimensions.
The paper is organized as follows. In Sec.2, we

study running effects of gauge couplings in the
bulk. In Sec.3, we identify the MAC and find the
effective cutoff at which the DχSB takes place. In
Sec.4, we predict mt and mH . Sec.5 is devoted
to summary and discussions. In Appendix A, we
present a concrete procedure of our compactifica-
tion. We also show the numerical calculation for
the total number of KK modes below the renor-
malization point.

II. RUNNING EFFECTS OF BULK
GAUGE COUPLINGS

We consider that the SM gauge group and the
third generation of quarks and leptons are put in
D dimensional bulk, while other first and second
generations live on the 3-brane (4-dimensions).
(ACDH model [6]) Here, we assume that four of
D-dimensions are the usual Minkowski spacetime
and extra (D − 4) spatial dimensions are com-
pactified at a universal scale 1/R of the order of
a few TeV. Since we investigate chiral condensa-
tions of bulk fermions, we take even dimensions,
D = 6, 8, 10, · · · .



Before analyzing the most attractive channel
(MAC) [12] at the cutoff scale Λ, we study run-
ning effects of bulk gauge couplings. For a while,
we consider an effective theory on the 3-brane.
Below the compactification scale 1/R, renormal-
ization group equations (RGEs) of gauge cou-
plings gi(i = 3, 2, Y ) on the 3-brane are, of
course, reduced into the SM one,

(4π)2µ
dgi
dµ

= bi g
3
i , (µ < 1/R) (4)

with b3 = −7, b2 = − 19
6 and bY = 41

6 . How-
ever, we should take into account contributions
of Kaluza-Klein (KK) modes in µ ≥ 1/R. Since
the KK modes heavier than the renormalization
scale µ are decoupled in RGEs on the 3-brane,
we only need summing up the loops of the KK
modes lighter than µ. This is called “truncated
KK” effective theory [8, 9]. Within the truncated
KK effective theory, we obtain RGEs for gauge
couplings gi(i = 3, 2, Y ) on the 3-brane:

(4π)2µ
dgi
dµ

= bi g
3
i +NKK(µ) b′i g

3
i , (µ ≥ 1/R)

(5)
where NKK(µ) denotes the total number of KK
modes below the renormalization point µ. We
easily find

NKK(µ) =
1
2n

πδ/2

Γ(1 + δ/2)
(µR)δ, δ ≡ D − 4

(6)
for µ � R−1 with the orbifold compactification
T δ/Zn2 . Hereafter, we take Z2 projection for D =
6, Z2×Z ′

2 projection for D = 8, and Z2×Z ′
2×Z ′′

2

projection for D = 10 1, i.e.,

n = 1, 2, 3 (7)

for D = 6, 8, 10, respectively. In Appendix A, we
show the numerical calculation of NKK(µ). The
RGE coefficients b′i arising from loop effects of
KK modes are obtained as

b′3 = −11 +
δ

2
+

4
3
· 2δ/2 · ng (8)

for SU(3)c,

b′2 = −22
3

+
δ

3
+

4
3
· 2δ/2 · ng +

1
6
nH (9)

for SU(2)W , and

b′Y =
20
9

· 2δ/2 · ng +
1
6
nH (10)

1 For a concrete procedure, see Appendix A.

for U(1)Y , respectively, where ng (nH) denotes
number of generations (composite Higgs bosons)
in the bulk. In our model, ng is unity and
one composite Higgs doublet, nH = 1, is as-
sumed. (In RGE coefficients bi for the SM, we
have already assumed the minimal Higgs sector.)
Matching the 3-brane action to the bulk action,
we find the relation between the dimensionfull
bulk gauge coupling gD and the 3-brane gauge
coupling g, g2

D = (2πR)δg2/2n. On the other
hand, it is natural to define the dimensionless
bulk gauge coupling ĝ as ĝ2 ≡ g2

Dµ
δ. Thus, we

can write down ĝi in the terms of gi,

ĝ2
i (µ) =

(2πRµ)δ

2n
g2
i (µ). (11)

Substituting Eq. (11) for Eq. (5), we can obtain
RGEs for ĝi,

µ
d

dµ
ĝi =

δ

2
ĝi

+
ĝ3
i

(4π)2
2n

(2πRµ)δ
[ bi +NKK(µ)b′i ] .(12)

We solve numerically Eq. (12) and show typical
behavior of the dimensionless bulk gauge cou-
plings in Fig. 1. We used input parameters at
µ = MZ(= 91.1876 GeV) as [14]

α3(MZ) = 0.1172, (13)

and

α−1
QED(MZ) = 127.934, sin2 θW (MZ) = 0.23113,

(14)
whose values correspond to

α2(MZ) = 0.033813, αY (MZ) = 0.010166.
(15)

Now, we consider analytical expressions for ĝi.
Eq. (12) is approximately written as

µ
d

dµ
ĝi =

δ

2
ĝi + (1 + δ/2)ΩNDAb

′
i ĝ

3
i (16)

in µ � 1/R, where we used Eq. (6) and defined
the loop factor ΩNDA in D-dimensions,

ΩNDA ≡ 1
(4π)D/2Γ(D/2)

. (17)

Thus, we easily find that dimensionless bulk
gauge couplings with b′i < 0 have ultraviolet fixed
points (UV-FPs) gi∗,

g2
i∗ΩNDA =

1
−(1 + 2/δ) b′i

, (18)
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FIG. 1: Typical RG flows of the dimensionless bulk
gauge couplings, ĝ2

3ΩNDA, ĝ2
2ΩNDA, and ĝ2

Y ΩNDA.
The graphs from top to bottom show RG flows for
D = 6, 8, 10, ng = 1, R−1 = 10 TeV, respectively.
In all graphs, points and lines represent numeri-
cal solutions of Eq. (12) and analytical ones such
as Eq. (19). In addition, the upward and down-
ward horizontal lines are the renormalization point
µ and (µR)δ which is closely related to the total
number of KK modes below µ, respectively. We
used α3(MZ) = 0.1172, α2(MZ) = 0.033813, and
αY (MZ) = 0.010166.

within the truncated KK effective theory. We
can also show b′3 < 0 and ĝ2

3(µ) ≤ g2
3∗ for the

bulk QCD with D = 6, ng = 1, 2, 3 and with
D = 8, ng = 1. In our previous analyses in
Ref. [10, 11], we have studied the dynamics of
bulk gauge theories with b′i < 0. In this paper,
we include the effect of the bulk hypercharge. Of
course, b′Y is always positive. Even in the bulk
QCD, we find that the coefficient b′3 becomes pos-
itive for D = 8, ng ≥ 2 and D ≥ 10, ng ≥ 1.
An important point is that gauge theories with
b′i > 0 have the Landau pole ΛLi. Within the
approximation of Eq. (16), we can rewrite ana-
lytically the dimensionless bulk gauge couplings
with b′i > 0 as

ĝ2
i (µ)ΩNDA =

1
(1 + 2/δ) b′i

· µδ

−µδ + ΛδLi
, (19)

where the Landau pole ΛLi is given by

(ΛLiR)δ = 1 +
2nδ2Γ(δ/2)
b′i πδ/2−1

×
(
α−1
i (MZ) +

bi
2π

ln(MZR)
)
. (20)

The similar expression for ĝi(µ) with b′i < 0
is shown in Ref. [11]. Since the SU(2)W in-
teraction does not contribute chiral condensa-
tions such as 〈t̄LtR〉, the sign of b′2 is less im-
portant. Here, we comment on validity of ana-
lytical expressions such as Eq. (19). Comparing
Eq. (19) with numerical solutions of Eq. (12), we
find that our approximations work very well for
D = 6, ng = 1, whereas they are not numeri-
cally so well for D = 8, 10, ng = 1. (See also
Fig. 1.) The Landau poles ΛLi are very close
to the compactification scale, ΛLiR ∼ 2 − 4 for
D = 8, 10, ng = 1. This is the reason why our ap-
proximations are broken down. (See also graphs
for NKK(µ) in Appendix A.) Although analytical
expressions for ĝ2

i (µ) such as Eq. (19) describe
roughly behaviors of ĝ2

i (µ), they are not suitable
for the numerical analysis. Hereafter, we do not
use analytical expressions such as Eq. (19) in nu-
merical calculations.

The bulk hypercharge always has the Landau
pole ΛLY . We cannot take the cutoff larger than
the Landau pole ΛLY . In addition, the bulk QCD
coupling with D = 10, ng = 1 also goes to infin-
ity at its Landau pole ΛL3. Thus, we study the
behavior of the bulk QCD coupling ĝ3 below the
Landau pole ΛLY of the bulk hypercharge. In
Fig. 1, we find that the Landau pole ΛLY is not so
far from the universal compactification scale 1/R,
e.g. ΛLYR � 13, 3.7, 2.3 for D = 6, 8, 10, ng = 1,
respectively. As shown in Fig. 1, each behavior



of ĝ3 below ΛLY is quite different in D = 6, 8, 10.
The bulk QCD coupling around ΛLY is close
to its UV-FP g3∗ in D = 6, ng = 1, whereas
ĝ3 in D = 8, ng = 1 is well below g3∗ in the
whole energy region µ < ΛLY . In the case of
D = 10, ng = 1, the Landau pole ΛL3 for the
bulk QCD coupling is close to that of the bulk
hypercharge ΛLY . (See also Fig. 1.)

In any case, we cannot neglect the effect
of the bulk hypercharge in the analysis of the
MAC. Taking into account the running effects of
ĝ3,Y (µ), we study the MAC in the next section.

III. MAC AND CRITICAL BINDING
STRENGTH

In this section, we reanalyze the MAC by us-
ing the running bulk gauge couplings ĝi(µ). If the
top quark condensate becomes the MAC and its
binding strength exceeds the critical value for the
DχSB at the same time, the TMSM in the bulk
can be naturally realized within pure bulk gauge
theories. In the MAC analysis of the earlier at-
tempt [6], they assumed ĝ2

3 = ĝ2
2 = ĝ2

1(= 5/3ĝ2
Y ),

although these values for D = 6, 8, ng = 1 shown
in Fig. 1 look like very small, ĝ2

i ∼ 0.1. (The
gauge couplings are not unified in strict sense.)
In addition, they did not study the dynamics of
the bulk gauge interactions. Thus, we have in-
vestigated the DχSB in the bulk and estimated
the value of the critical binding strength for the
DχSB [10, 11]. In the following analysis, we find
that the binding strength of the top-condensate
reaches the critical value near the Landau pole
ΛLY rather than the point of ĝ2

3 � ĝ2
2 � ĝ2

1 . In
such a situation, it is nontrivial whether the top-
condensate becomes the MAC or not. Thus, the
running effects of ĝi(µ) are crucial in our analy-
sis of the MAC. We also note that the cutoff Λ
should not be an adjustable parameter like in the
approaches of ACDH [6] and Kobakhidze [13],
but it is determined as the energy scale that
the DχSB takes place. Since the cutoff Λ is
related to the electroweak symmetry breaking
(EWSB) scale through the vacuum expectation
value (VEV) of the top-condensate, the scale of
Λ is calculable, for example, by using the Pagels-
Stokar formula [19], once the EWSB scale v is
fixed to v = 246 GeV. In this paper, however, we
expect that the value of the effective cutoff Λ is
around the critical energy scale realizing 〈 t̄t〉 	= 0,
instead of calculating Λ explicitly.

At the beginning, we identify the MAC at
the cutoff Λ. In the one-gauge-boson-exchange
approximation, the binding strength κ of a ψ̄χ

channel is given by

κ(µ) ≡ ĝ2
3(µ)ΩNDAT ψ̄ · T χ

+ĝ2
2(µ)ΩNDAT ′

ψ̄ · T ′
χ

+ĝ2
Y (µ)ΩNDAYψYχ, (21)

where T , T ′ are the generators of
SU(3)c, SU(2)W , and Y is the hypercharge.
Noting the identity,

T ψ̄ · T χ =
1
2

(
C2(ψ̄) + C2(χ) − C2(ψ̄χ)

)
(22)

with the quadratic Casimir C2(r) for the repre-
sentation r of the gauge group, we can easily cal-
culate the binding strength and obtain

κt(µ) = CF ĝ
2
3(µ)ΩNDA +

1
9
ĝ2
Y (µ)ΩNDA (23)

for the top-condensate with the quadratic
Casimir CF (= 4/3) of the fundamental represen-
tation,

κb(µ) = CF ĝ
2
3(µ)ΩNDA − 1

18
ĝ2
Y (µ)ΩNDA (24)

for the bottom-condensate, and

κτ (µ) =
1
2
ĝ2
Y (µ)ΩNDA (25)

for the tau-condensate, respectively. Our sce-
nario of the TMSM with extra dimensions works
in the situation,

κt(Λ) > κcrit
D > κb(Λ), κτ (Λ), (26)

where κcrit
D denotes the critical binding strength.

From Eqs. (23), (24), (25), and binding strengths
listed in Ref. [6], we easily find that the MAC is
the top (tau)-condensate among many possible
scalar bound states, when the bulk QCD (hy-
percharge) is dominant. Here, we note that we
should take a moderately large cutoff Λ, since
bulk gauge interactions at the scale of NKK(Λ) ∼
O(1) are perturbative. Since the bulk QCD cou-
pling inD = 6, 8, ng = 1 is less than its UV-FP as
we have shown in the previous section, the bulk
hypercharge becomes dominant near the Landau
pole ΛLY . In the cases of D = 6, 8, ng = 1, thus,
it is highly non-trivial whether suitable cutoffs
realizing only the top-condensation exist or not
between 1/R and ΛLY .

Next, we discuss the value of the critical bind-
ing strength κcrit

D . In the estimation of κcrit
D , the

naive dimensional analysis (NDA) [17, 18] is usu-
ally applied. In the NDA, the DχSB is expected



to occur when the binding strength κ is larger
than one, i.e.,

κcrit
D (NDA) = 1. (27)

Our scenario with D = 10, ng = 1 works even
in the framework of the NDA up to 1/R � 34
TeV. For more concrete estimation of κcrit

D , we
have studied the (improved) ladder Schwinger-
Dyson (SD) equation in the bulk, which is a gap
equation derived from the bi-local 4-fermion in-
teraction. [10, 11] We have incorporated the bulk
QCD interaction with ĝ2

3(µ) = const., whose ap-
proximation is justified in b′3 < 0 and ΛR � 1
thanks to the UV-FP. In the ladder SD equation,
running effects in the whole energy region be-
low the cutoff contribute to the DχSB. As shown
in Fig. 1, all of bulk gauge couplings ĝ2

i (µ) are
monotonously increasing functions. Thus, the
simplification of ĝ2

i (µ) = const. leads to lower
bounds of critical points for the DχSB. In the
analysis of Ref. [10], we have used the so-called
Higashijima-Miransky (or improved ladder) ap-
proximation [20, 21] in order to incorporate the
running effect of the bulk gauge coupling 2. In
the Higashijima-Miransky approximation, we re-
place the dimensionfull bulk gauge coupling gD
to the running one as

g2
D → g2

D(max(−p2,−q2)), (28)

where p and q denote the external and loop mo-
menta of the bulk fermion, respectively. While
the improved ladder approximation with the
Landau gauge is consistent with the vector Ward-
Takahashi (WT) identity, the axial WT iden-
tity is violated. However, this approximation has
been widely used because it greatly simplifies the
angular integration in the ladder SD equation. In
the limit of ΛR � 1, we find numerically the crit-
ical points with κ(µ) = const.,

κcrit
6 (SD1) � 0.122 (29)

for D = 6,

κcrit
8 (SD1) � 0.146 (30)

for D = 8, and

κcrit
10 (SD1) � 0.163 (31)

for D = 10, respectively 3. In Ref. [11], on the
other hand, we have taken the argument of the

2 The ladder SD equation is written in terms of the di-
mensionfull bulk gauge coupling gD.

3 The value for D = 10 is not reported in Ref. [10].

running coupling to the loop momentum of gluon
such as

g2
D → g2

D(−(p− q)2). (32)

This is a manner consistent with the vector and
axial WT identities, although it is generally diffi-
cult to perform analytically the angular integra-
tion in the ladder SD equation. [22] In Ref. [11],
we have estimated the critical points κcrit

D with
ΛR� 1 and κ(µ) = const.,

κcrit
D (SD2) =

D
32

D − 2
D − 1

, (33)

whose numerical values are

κcrit
6 (SD2) =

3
20

= 0.15 (34)

for D = 6,

κcrit
8 (SD2) =

3
14

� 0.214 (35)

for D = 8, and

κcrit
10 (SD2) =

5
18

� 0.278 (36)

for D = 10, respectively. Although we find nu-
merically κcrit

D (SD2)>∼ κcrit
D (SD1), the DχSB can

take place in both cases, even if the binding
strength is about 0.1 times less than the value
of the NDA. Here, we note that we cannot take a
sufficiently large cutoff due to the Landau pole in
fact. In our situation ΛR ∼ 1−10, explicit break-
ing effects of the D-dimensional Lorentz symme-
try due to the compactification may not be neg-
ligible. When we take into account such a effect
in the estimation of κcrit

D , we find that the crit-
ical point κcrit

D tends to be larger [11]. Namely,
the value of κcrit

D is unlikely to be smaller than
κcrit
D (SD1), even if we take into account ambi-

guities of the ladder SD equation about ∼ 20%.
Thus, we can regard κcrit

D (SD1) as the minimal
estimation among available values of the critical
points. We use most conservatively κcrit

D (SD1) in
the following analysis.

Now, we are ready to study which of con-
densations is the MAC and whether the MAC
condensation can realize or not. We compare
the binding strengths of top-, bottom-, and tau-
condensates with the critical point κcrit

D . (See
Fig. 2.) In the model with D = 6, ng =
1, the top-condensation can take place around
(ΛR)2>∼ 125, while the tau-condensation is real-

ized around (ΛR)2>∼ 100. Thus, the minimal sce-

nario of the bulk TMSM with D = 6, ng = 1
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FIG. 2: Effective cutoffs Λ for the top-condensation
in the bulk. The graphs from top to bottom represent
the binding strength κt,b,τ with D = 6, 8, 10, ng =
1, R−1 = 10 TeV, respectively. The unshaded re-
gions show suitable cutoffs satisfying the condition,
κt(Λ) > κcrit

D (SD1) > κτ (Λ). The shaded region in
the R.H.S. of the bottom graph is excluded because
of Λ > ΛLY .

is unlikely to work. For D = 8, ng = 1, we
find that the condition κt(Λ) > κcrit

D (SD1) >
κτ (Λ) is satisfied by using the effective cutoff,
(ΛR)4 � 125− 150. It is also important that the
bottom condensation is naturally suppressed in
D = 8, ng = 1. Although the top-condensate be-
comes the MAC in D = 10, ng = 1 and its bind-
ing strength exceeds the critical point κcrit

10 (SD1),

we need to tune finely the effective cutoff in or-
der to suppress the bottom condensation. (See
also Fig. 2.) We note that these behaviors of the
binding strengths, κt,b,τ , are not so changed by
varying the compactification scale, R−1 = 1−100
TeV. (See Figs. 3, 4, and 5.)

In the next section, we predict the top-quark
mass mt and the Higgs boson mass mH by using
the effective cutoff Λ around κt(Λ) � κcrit

D (SD1).

IV. PREDICTIONS OF mt AND mH

The parameter in our approach is essentially
only one, ΛR. In the previous section, we have
determined Λ as the energy scale satisfying the
relation κt(Λ) ∼ κcrit

D (SD1). By using such a
cutoff Λ and RGEs of the top-Yukawa and Higgs-
quartic couplings, we can predict masses of the
top-quark and the Higgs boson, mt and mH .

As shown in our earlier papers [10, 11], the con-
densation of the bulk fermion in bulk gauge the-
ories has the large anomalous dimension, γm =
D/2 − 1 near the critical point. We thus find
that the 4-fermion operator in the bulk be-
comes a marginal one. The situation is quite
similar to the strongly interacting QED in 4-
dimensions [23, 24]. Although our model is based
on pure bulk gauge theories, 4-fermion operators
such as (q̄LtR)2 are generated in the bulk. If
we assume that the coefficient of the 4-top op-
erator is sufficiently large and attractive, while
the 4-bottom and 4-tau interactions are repul-
sive, the ACDH scenario always works, even in
κt(Λ) < κcrit

D . In such a case, we need to study
the phase structure of the gauged Nambu-Jona-
Lasinio model in the bulk. The analysis will be
performed elsewhere [25]. In this paper, we pur-
sue the possibility that the DχSB takes place
thanks to bulk gauge interactions.

We rewrite the 4-top interaction in terms of
the composite scalar field by using the auxiliary
field method as usual,

(q̄LtR)2 → H†
0H0, (37)

where H0 denotes the bare Higgs field. We
thereby obtain the bulk SM without the kinetic
term for H0 at the cutoff scale Λ,

LD = Lkin − y0(q̄LH0tR + h.c.)

−m2
H0H

†
0H0 − λ0

2
(H†

0H0)2, (38)

where Lkin represents the kinetic terms of the
top-quark and gauge bosons in the bulk, and
y0, λ0 and mH0 denote bare quantities. Below
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FIG. 3: Dependence of the binding strengths, κt, κb, and κτ , on the compactification scale R−1. In all graphs,
the vertical and the horizontal lines are the compactification scale R−1 and (ΛR)δ, respectively. We used
α3(MZ) = 0.1172, and αY (MZ) = 0.010166.

the cutoff Λ, the composite Higgs field in the
bulk develops its kinetic term. In the same way
as the approach of the TMSM á la Bardeen, Hill
and Lindner [3], we can expect to reproduce the

conventional SM in the bulk in the energy scale
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FIG. 4: The same graphs as Fig. 3 in the case of D = 8, ng = 1.

between 1/R and Λ:

LD → Lkin − y(q̄LHtR + h.c.)

+|DMH |2 −m2
HH

†H − λ

2
(H†H)2, (39)

where M = 0, 1, 2, 3, 5, · · ·D, and we renormal-

ized bare couplings as

y = Zyy0/(Z
1/2
H Z1/2

qL
Z

1/2
tR ), λ = Zλλ0/Z

2
H (40)

by using the multiplicative renormalization of the
fields, H0 → H/Z

1/2
H , qL → qL/Z

1/2
qL , and tR →

tR/Z
1/2
tR , and the proper vertex renormalization
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FIG. 5: The same graphs as Fig. 3 in the case of D = 10, ng = 1.

constants Zy and Zλ. Here, we note that KK
modes of the top-quark contribute the VEV of
the zero mode of H (the SM Higgs boson) as

well as the zero mode of the top-quark,

〈H(0)〉 ∝
n2

R2<Λ2∑
n=0

〈q̄(n)
L t

(n)
R 〉, (41)

where X (0) and X(n)(n 	= 0) denote the zero



mode and KK modes of the field X , respectively.
The VEV of each condensate is thus suppressed
and the mass of the top-quark thereby goes down.
For more detailed analysis for predictions of mt

and mH , we use RGEs for y and λ with the com-
positeness conditions [3],

y(Λ) → ∞,
λ(Λ)
y(Λ)4

→ 0. (42)

Before the full calculation of 1-loop RGEs, we
analyze the property of the RGE for the top-
Yukawa coupling. In the bubble approximation,
we easily find the wave function renormalization
constant ZH ,

ZH(µ) =
y2
0

(4π)2
NKK(µ) ·2δ/2 ·Nc ln Λ2/µ2. (43)

The new factors, NKK and 2δ/2, arise from the
number of KK modes and components of the
bulk fermion, respectively. On the other hand,
δ pieces of gauge scalars contribute the vertex
correction of the top-Yukawa coupling. Thus,
the effect of ZH becomes dominant in Eq. (40)
as the number of dimensions increases. The en-
hancement of ZH , of course, suppresses the top-
Yukawa coupling. In order to demonstrate the
suppression for the top-Yukawa coupling y, we
consider the 1-loop RGE for y at the leading or-
der of Nc:

(4π)2µ
dy

dµ
=

NKK(µ) y
[
2δ/2Nc y2 − CF (6 + δ)g2

3

]
. (44)

Noting NKK(µ) ∝ (µR)δ, we obtain approxi-
mately

dY

dNKK(µ)
= − 1

8π2δ

[
2δ/2Nc − CF (6 + δ)g2

3Y
]
,

(45)
where we defined Y ≡ 1/y2. Since the derivative
of g2

3 with respect to NKK(µ) is approximately
given by

dg2
3

dNKK(µ)
=

b′3
8π2δ

g4
3 , (46)

the running effect of the gauge coupling g2
3 is al-

most negligible around the compactification scale
1/R. The top-Yukawa coupling in µ ∼ 1/R is
thus attracted toward the quasi IR-fixed point
y∗ [15, 16],

y∗ =

√
CF (6 + δ)

2δ/2Nc
g3, (47)

whose value obviously decreases as δ increases.
We also show the behavior of y for various bound-
ary conditions in Fig. 6, where we used the full
1-loop RGE instead of Eq. (44). We can confirm
that the top-Yukawa coupling around 1/R is con-
trolled by the quasi IR-FP y∗(∼ 1 for D = 8, 10).
As a result, the problem of the prediction for mt,
mt > 200 GeV, in 4-dimensions can be resolved
in the TMSM with extra dimensions.

Now, we predict mt and mH . Within the trun-
cated KK effective theory, we easily find RGEs
for the top-Yukawa coupling y 4,

(4π)2µ
dy

dµ
= βSM

y + βKK
y , (48)

βSM
y = y

[ (
Nc +

3
2

)
y2

−6CFg2
3 − 9

4
g2
2 − 17

12
g2
Y

]
, (49)

βKK
y = NKK(µ) y

[ (
2δ/2 ·Nc +

3
2

)
y2

−(6 + δ)CF g2
3 − 3

4
(3 − δ/2)g2

2

− (102− δ)
72

g2
Y

]
, (50)

and for the quartic coupling λ of the Higgs boson,

(4π)2µ
dλ

dµ
= βSM

λ + βKK
λ , (51)

βSM
λ = 4Nc

(
λy2 − y4

)
+ 12λ2

+
3
4
(3g4

2 + 2g2
2g

2
Y + g4

Y )

−3(3g2
2 + g2

Y )λ (52)

βKK
λ = NKK(µ)

[
22+δ/2 ·Nc

(
λy2 − y4

)
+ 12λ2

+
3 + δ

4
(3g4

2 + 2g2
2g

2
Y + g4

Y )

−3(3g2
2 + g2

Y )λ
]
, (53)

where βSM
y,λ and βKK

y,λ correspond to the contribu-
tions of the zero mode and KK modes, respec-
tively. We show solutions of the RGE for the
top-Yukawa coupling in Fig. 7. Since the top-
condensation is not favored in D = 6, ng = 1,

4 There are some errors in the expression of the RGE
for y in Ref. [6], although they are not so significant
numerically.
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FIG. 6: The quasi IR-fixed point for the top-Yukawa coupling. The graphs from top to bottom represent
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used the full 1-loop RGE of y with the boundary conditions, y(Λ) → ∞ (solid lines) and y(Λ) = 1, 1, 1.5 for
D = 6, 8, 10 (dashed lines). We took two typical cutoffs Λ.

the solutions for D = 8, 10, ng = 1 are meaning-
ful in our scenario. Thanks to the quasi-IR-fixed
point y∗, our predictions for mt are stable. We
also find that predictions formt are insensitive by
varying the compactification scale. (See Fig. 8.)
We finally obtain

mt = 172− 177 GeV, (54)

for D = 8, ng = 1, and

mt = 166− 172 GeV, (55)

for D = 10, ng = 1, respectively, where we took
1/R = 1 − 100 TeV and the error range of the
QCD coupling atMZ , α3(MZ) = 0.1172±0.0020.
Our predictions good agree with the experimen-
tal value, 174.3 ± 5.1 GeV [14]. We also predict



the mass of the Higgs boson by using RGEs of
Eqs. (48) and (51) with the compositeness con-
ditions, and find

mH = 179− 202 GeV, (56)

for D = 8, ng = 1, R−1 = 1 − 100 TeV, and

mH = 181− 216 GeV, (57)

for D = 10, ng = 1, R−1 = 1−100 TeV. (See also
in Fig. 9.)

We comment that we predict mt>∼ 200 GeV

in other cases of D = 6, 8, 10, ng = 2, 3. The
bulk QCD coupling tends to be larger in cases
of D = 6, 8, 10, ng = 2, 3. This is the reason why
the predictions of mt are enhanced. We also note
that the values of mt for D = 6, 8 in Ref. [6] is
smaller than our estimations by about 10 − 20
GeV. The analysis for mH is similar, too.

V. SUMMARY AND DISCUSSIONS

We have studied the DχSB in the bulk caused
by bulk gauge interactions and the TMSM with
extra dimensions as the phenomenological appli-
cation of the bulk gauge dynamics. For this pur-
pose, we have calculated the binding strengths
of the top-, bottom-, and tau-condensates by
using RGEs for gauge couplings. We showed
that the analysis of the MAC in the earlier at-
tempt [6], where all bulk gauge couplings are
assumed to be equal, is not suitable and that
the top-condensation takes place near the Lan-
dau pole of the bulk hypercharge. It is thus
quite nontrivial whether the top-condensation is
favored or not. Combining our MAC analysis
with the critical binding strength κcrit

D previously
obtained in our papers [10, 11], we showed that
the top-condensation can be favored in models
with D = 8, 10, ng = 1, while the tau-condensate
is the MAC in D = 6, ng = 1. We note that
the bottom-condensation is naturally suppressed
in D = 8, ng = 1, whereas a fine tuning is
needed to suppress the bottom-condensation in
D = 10, ng = 1. We emphasis that we can de-
termine the parameter of our model, ΛR, as the
energy scale realizing 〈t̄t〉 	= 0, in sharp contrast
to earlier approaches of Ref. [6, 13] where the
cutoff is treated as a free parameter. By using
the RGE for the top-Yukawa coupling and the
compositeness conditions at the cutoff satisfying
κt(Λ) � κcrit

D , we have predicted the top-quark
mass mt:

mt = 172− 177 GeV (58)
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FIG. 7: Solutions of the RGE for the top-Yukawa
coupling. The graphs from top to bottom show
the top-quark mass (mt = v · y(mt)/

√
2) for D =

6, ng = 1, R−1 = 10 TeV, D = 8, ng = 1, R−1 = 10
TeV, and D = 10, ng = 1, R−1 = 10 TeV. In
all graphs, the unshaded regions are preferable for
the top-condensation. We used α3(MZ) = 0.1172,
α2(MZ) = 0.033813, and αY (MZ) = 0.010166.

for D = 8, ng = 1, and

mt = 166− 172 GeV (59)

for D = 10, ng = 1, respectively, where we took
1/R = 1 − 100 TeV and the error range of the
QCD coupling as α3(MZ) = 0.1172 ± 0.0020.
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FIG. 8: Predictions of the top-quark mass mt(=
v · y(mt)/

√
2) for D = 8, 10, ng = 1. The

horizontal and vertical lines represent (ΛR)δ and
the compactification radius R−1, respectively. We
used α3(MZ) = 0.1172, α2(MZ) = 0.033813, and
αY (MZ) = 0.010166. We do not show the graph for
D = 6, ng = 1, because the top-condensation is not
favored in our scenario.

Our predictions for mt are stable thanks to the
quasi IR-FP y∗ and consistent with the exper-
imental value of mt, mt = 174.3 ± 5.1 GeV.
Since the value of y∗ is approximately given by
y∗ = g3 ·

√
CF (6 + δ)/(2δ/2Nc), the mass of the

top-quark tends to decrease as the number of di-
mensions increases. This is one of reason why
the problem of the prediction for mt larger than
200 GeV in 4-dimensions is resolved in extra di-
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FIG. 9: Predictions of the Higgs boson mass
mH(= v · √

λ(mH)) for D = 8, 10, ng = 1. The

horizontal and vertical lines represent (ΛR)δ and
the compactification radius R−1, respectively. We
used α3(MZ) = 0.1172, α2(MZ) = 0.033813, and
αY (MZ) = 0.010166. We do not show the graph for
D = 6, ng = 1, because the top-condensation is not
favored in our scenario.

mensions. Since the suppression factor 2δ/2 in
y∗ comes from the number of components of the
chiral fermion in the D-dimensional bulk, it is
essential that the top-condensation takes place
in the bulk. Although the solution of RGE in
D = 6, ng = 1, mt = 176 − 182 GeV,is also con-
sistent with the experimental value, we need to
introduce the attractive 4-top interaction in the
bulk in order to enhance the binding strength of



the top-condensate. In addition, we found again
mt>∼ 200 GeV for D = 6, 8, 10, ng = 2, 3. Since

the bulk QCD coupling grows as the number of
bulk fermions increases, the top mass also tends
to be larger than the values for ng = 1. As for
the Higgs boson mass, we predicted

mH = 179− 202 GeV (60)

for D = 8, ng = 1, and

mH = 181− 216 GeV (61)

for D = 10, ng = 1, respectively. The Higgs bo-
son with the mass, mH ∼ 180 − 220 GeV, can
be easily observed at collider experiments such
as the LHC.

Some issues remain unsolved. In particu-
lar, the explicit breaking of the D-dimensional
Lorentz symmetry, whose effects are not taken
into account in the estimation of κcrit

D , may be
important, because the cutoff Λ is not so large
compared with the compactification scale 1/R.
Since our scenario is strongly depend on the value
of κcrit

D , it is important to determine precisely
κcrit
D . A regular strategy is that we investigate

the effective theory on the 3-brane including ef-
fects of KK modes. It is, however, quite dif-
ficult to perform such an analysis, because the
gap equation is not a closed form including only
zero mode of fermions. In this paper, we have
taken κcrit

D most conservatively as minimal val-
ues among available ones. If more reliable values
of κcrit

D are significantly larger, our scenario, i.e.,
the DχSB thanks to the bulk gauge dynamics,
may be broken down. In such a case, we may
introduce 4-fermion interactions, for example, so
as to get out of the problem. Then, we need to
study the phase structure of the gauged Nambu-
Jona-Lasinio model. The investigation will be
performed elsewhere. [25]

APPENDIX A: ORBIFOLD
COMPACTIFICATION AND NUMERICAL

ANALYSIS FOR NKK

We have investigated the top-condensation in
the bulk. Since a chiral fermion in the bulk (D >
4) has four or more components, we compactify
extra dimensions on an orbifold so that unwanted
components are projected out by its boundary
conditions. Of course, gauge bosons also have
unwanted components, i.e., gauge scalars. For
gauge bosons AM , we impose the following Z2

symmetry as usual,

Aµ(xµ,−yj) = +Aµ(xµ, yj) (A1)

for conventional pieces, and

Aj(xµ,−yj) = −Aj(xµ, yj) (A2)

for gauge scalars, where we decomposed the
space-time coordinate into conventional dimen-
sions and extra ones:

xM = (xµ, yj), M = 0, 1, 2, 3, 5, 6, · · · , D,
µ = 0, 1, 2, 3, j = 5, 6, · · · , D. (A3)

For chiral fermions in the bulk, such a discrete
symmetry may be nontrivial. We thus describe
concretely a systematic procedure to find a de-
sirable orbifold compactification.

Let us consider the minimal case D = 6 for
simplicity. The chiral projection operators in six
dimensions are given by

1 ± Γχ
2

, Γχ ≡ Γ0Γ1Γ2Γ3Γ5Γ6, (A4)

and the chiral fermions ψ± satisfy the relation

Γχψ± = ±ψ±. (A5)

We compactify extra dimensions to a torus with
a universal compactification radius R:

ψ±(xµ, y5, y6) = ψ±(xµ, y5 + 2πR, y6)
= ψ±(xµ, y5, y6 + 2πR).(A6)

The chiral fermion in D = 6 is then decomposed
into KK modes:

ψ±(xµ, yj) =∑
n5,n6

ψ
(n5,n6)
± (xµ) exp

[
i
n5y

5 + n6y
6

R

]
.(A7)

We next introduce the four-dimensional chirality
matrix γ5,

γ5 ≡ iΓ0Γ1Γ2Γ3, (A8)

which satisfies

γ5γ5 = 1 (A9)

and

γ5Γχ = Γχγ5 = −iΓ5Γ6. (A10)

The chiral fermion in 4-dimensions is defined by
the chiral projection of γ5,

(ψ)R,L ≡ 1 ± γ5

2
ψ. (A11)

Now, we impose the boundary condition

ψ±(x,−y5,−y6) = −iΓ5Γ6ψ±(x, y5, y6). (A12)



By definition of ψ± and using Eq. (A10), we find
that the Z2 projection of Eq. (A12) is equivalent
to

ψ±(x,−y5,−y6) = ±γ5ψ±(x, y5, y6). (A13)

Under this Z2 symmetry, 4-dimensional chiral
fermions behave as

(ψ+)R → +(ψ+)R, (ψ+)L → −(ψ+)L,(A14)

and

(ψ−)R → −(ψ−)R, (ψ−)L → +(ψ−)L.(A15)

We thus identify right(left)-handed particles in
the SM as ψ+(ψ−). In the same way, we can
reduce chiral fermions in D = 2k + 2 dimensions
to those in D = 2k dimensions. For more general
procedures, see, e.g., Ref. [10].

Let us count the total number of KK modes be-
low µ in our orbifold compactification. For sim-
plicity, we study a bulk scalar field φ having the
zero mode, φ(xµ,−yj) = +φ(xµ, yj). The effec-
tive Lagrangian LD−2 in (D − 2)-dimensions is
derived from the D-dimensional one LD:

LD−2 =
1
2

∫ πR

−πR
dyD−1

∫ πR

−πR
dyDLD, (A16)

where the factor 1/2 arises from the Z2-
symmetry. Our scalar field φ(xM ) is then de-
composed into its KK modes as follows:

φ(xµ, yi, yD−1, yD) = φ(0,0)

+
∑

nD−1>0

φ(nD−1,0)cD−1 +
∑
nD>0

φ(0,nD)cD

+
∑

nD−1,nD>0

φ(nD−1,nD)cD−1cD

+
∑

nD−1,nD>0

φ(nD−1,nD)sD−1sD (A17)

where we omitted the trivial argument (xµ, yi),
i = 5, 6, · · · , D − 2 in (D − 2)-dimensional KK
modes such as φ(nD−1,nD) and we defined

ci ≡ cos
[
niy

i

R

]
, si ≡ sin

[
niy

i

R

]
. (A18)

We note that Z2-odd parts in φ(xM ) such as
φ(nD−1,nD)sD−1cD are projected out by our orb-
ifold compactification. After the dimensional re-
duction Eq. (A16), KK modes φ(n,0) and φ(0,n)

have a same mass spectrum MKK characterized
by one positive integer n, MKK = n2/R2. Sim-
ilarly, the fourth and fifth terms in Eq. (A17)
acquire same KK masses characterized by two

positive integers nD−1 and nD, MKK = (n2
D−1 +

n2
D)/R2. So as to avoid complexity, we introduce

a notation for (D − 2)-dimensional KK modes
characterized by some integers,

φ
[k1,k2,··· ]
D,2 , (A19)

i.e., φ(n,0), φ(0,n) ∈ φ
[k1]
D,2 and so on. The zero

mode in (D − 2)-dimensions is represented as
φ0
D,2. An important point is that one zero mode

φ0
D,2 and two pieces of φ[k1]

D,2 and φ
[k1,k2]
D,2 are left

in the decomposition Eq. (A17):

#φ0
D,2 = 1, #φ[k1 ]

D,2 = 2, #φ[k1,k2]
D,2 = 2. (A20)

While our procedure to obtain a 4-dimensional
theory from a 6-dimensional one is ended here, we
continue the reduction Eq. (A16) in D = 8, 10.
After twice reduction, (D − 4)-dimensional KK
modes φ[k1]

D,4 characterized by one positive integer
come from two KK modes of φ0

D,2 and one zero

mode of two pieces of φ[k1]
D,2, i.e., #φ[k1]

D,4 = 4. The

number of φ[k1,k2]
D,4 is more complicated: The zero

mode of φ[k1,k2]
D,2 also contributes it as well as KK

modes of φ0
D,2 and φ[k1]

D,2. In this way, we find

#φ0
D,4 = 1, #φ[k1]

D,4 = 4, #φ[k1,k2]
D,4 = 8,

#φ[k1,k2,k3]
D,4 = 8, #φ[k1,k2,k3,k4]

D,4 = 4. (A21)

After triple reduction, we obtain similarly

#φ0
D,6 = 1, #φ[k1]

D,6 = 6, #φ[k1,k2]
D,6 = 18,

#φ[k1,k2,k3]
D,6 = 32, #φ[k1,k2,k3,k4]

D,6 = 36,

#φ[k1,k2,k3,k4,k5]
D,6 = 24, #φ[k1,k2,k3,k4,k5,k6]

D,6 = 8.
(A22)

The total number of KK modes below the renor-
malization point µ in the 4-dimensional effective
theory is then given by

NKK(µ) =
k2
1/R

2<µ2∑
k1>0

#φ[k1]
D,D−4 +

(k2
1+k2

2)/R2<µ2∑
k1,k2>0

#φ[k1,k2]
D,D−4

+
(k2

1+k2
2+k2

3)/R2<µ2∑
k1,k2,k3>0

#φ[k1,k2,k3]
D,D−4 + · · · . (A23)



We use the counting rules Eqs. (A20), (A21), and
(A22) for D = 6, 8 and D = 10, respectively.

We count numerically the total number of KK
modes below µ and show the result in Fig. 10.
In our analysis, the DχSB takes place around
NKK(Λ) ∼ 100 forD = 6, 8, 10, ng = 1. However,
the cutoffs Λ corresponding to NKK(Λ) ∼ 100
are depend on the number of extra dimensions,

ΛR ∼ 10, 3, 2 for D = 6, 8, 10. We note that
the analytical expression for NKK in Eq. (6) does
not work well around ΛR ∼ 2 − 3. (See also
Fig. 10.) It causes discrepancy of RGE flows of
gauge couplings between the numerical solution
and the analytical one for D = 8, 10. (See also
Fig. 1.)
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FIG. 10: Total number of KK modes NKK(µ) below the renormalization point µ. The graphs from top to
bottom show NKK(µ) for D = 6, 8, 10, ng = 1. In all graphs, bold and dotted lines represent the numerical
analysis of NKK(µ) and the approximate expression Eq. (6) for µR � 1, respectively.


