

ATLAS NSWに向けた MicroMEGASの開発

<u>長坂憲子</u>, 越智敦彦, 山根史弥, 山内悟, 長谷川大晃, 本間康浩, 川本辰男^A, 片岡洋介^A, 増渕達也^A, 齋藤智之^B, 山崎友寛^B, 山谷昌大^B, 木村光太郎^B

神戸大理,東大素セ^A,東大理^B

ATLAS実験

Overall view of the LHC experiments.

LHC / HL-LHC Plan

New Small Wheel

レート耐性が強く、優れた位置・時間分解能を持つ検出器を導入し、

高ルミノシティにおけるトラックキング性能を維持し、

同時にエンドキャップ部の情報を用いてフェイクトリガーを減少させる計画.

2019~20年にインストール予定.

MicroMEGAS

Readout strip

Micro-mesh gaseous structure

-Ar(97%)+CO₂(3%)

- -104程度の増幅率
- -128µmの増幅領域 -> 高いヒットレートに対応 -高抵抗(20MΩ/cm)のstrip -> 放電抑制

NSWにおける、 高抵抗strip foilの R&D、生産は 日本(東大、神戸大)が担当

Tracking test

- 目的:MMの小型試作機が、NSWへの要求性能である、**検出効率99%以上**、 位置分解能100μm程度を満たすかどうかの確認。
- 日時:2015.09.05~2015.11.16
- ビーム: CERN SPS EHN1施設 120GeVのパイオンビーム

DAQ : APV25 -> SRS -> MMDAQ

Fe55を用いてゲインを測定し、 各chamberのnominal voltageを決定後、 tracking testを行なった.

性能評価 Efficiency 6

全chamberにおいて、検出効率>99%を達成.

性能評価 Position Resolution 7

照射した2枚のchamberのヒット位置の差から求める. 1枚のchamberの分解能は $\sigma/\sqrt{2}$.

目的:Backgroundとなるアの照射を行ない、MMがどうなるかの耐久試験 実際のメニューとしては、MMのAnode current情報を見て、放電を調べていく

線源: ¹³⁷Cs 14TBq @GIF++ (CERN) -> 130MHz/cm² -> 100kHz/cm²

r current monitor

2015年11月のcurrent monitor

全照射量は、~85mC/cm² 総ヒット数は、25.4×10¹⁰

<u>HL-LHC NSW環境下</u>

 γ の最大ヒットレート 1.5kHz/cm² オペレーション時間 3000fb⁻¹ / 5x10³⁴ cm⁻²s-1 = 6x10⁷ sec

-> total gamma hits 9x10¹⁰

HL-LHC 10年分の約3倍

<u>Chamberの表面状態</u>

	照射前	照射後	照射後
		(9月)	(2月)
1	1.3	9.0	30
2	1.2	3.4	10
3	1.3	15	30
4	1.3	10	22

1MΩ/sqが目標値

stripの観察 レーザー顕微鏡

抵抗値の増加、strip2~3µmの高さ変動、表面ザラザラ -> 何か表面にできた?

表面状態 XPS

走査型光電子分光分析装置(XPS)を用いて、試料表面の元素組成を分析.

O,Siの増加. Kaptonに用いられるフィラーが関与?

まとめ

- 2019~20年に、MicroMEGASをATLASにインストール予定.

- 小型試作機を作成し、NSWの要求性能である、検出効率>99%、 位置分解能<100µmを満たしていることを確認.
- その小型試作機を用いて、 γ 線のAging testを行なった. HL-LHCの10年分の3倍に対応する γ の照射に成功.
 - 抵抗値の増加
 - 2~3µmの高さ変動
 - XPSからO,Siの増加を確認
- 表面状態の理解.
- さらなる分析. ex)蛍光X線分析 ~10µm