

UNIVERSITY

to-electron conver-J-PARC ミューオン電子転換過程探索実験 COMETのためのストロー飛跡検出器の研究開発

Detector Section

to search for

Pion Capture Section

maget

Muons

A section to capture pions with a large solid angle under a high solenoidal

magnetic field by superconducting

九州大学修士1年 田中聡-21st ICEPP Symposium@長野県白馬村岳美山荘 Muon-Transport Section Pion-Decay and

2015/02/11

Protons

dal magnetic field. 21st ICEPP Symposium@長野県白馬村岳美山荘

A section to collect muons from

decay of pions under a solenoi-

COMET実験

 $\mu^- N \rightarrow e^- N$ を探索する実験。

荷電レプトンフレーバー保存を破る過程。

2015/02/11

COMET実験

 $\mu^- N \rightarrow e^- N$ を探索する実験。

荷電レプトンフレーバー保存を破る過程。 標準理論では厳しく制限されている(分岐比 O(10⁻⁵⁴)) が、標準理論を超えた複数の理論で、分岐比 O(10⁻¹⁵) が 予言されている。

発見すれば、<u>新しい物理の存在の証拠</u>となる。

この過程で得られる**単ーエネルギーの電子**を 探索する。

ミューオンが原子核軌道上で崩壊したときに 得られる電子の運動量ヒストグラム 0.18 W 0.16 uno 14 12 14 14 14 14 **Decay in Orbit** 0.1 Signal (Background) 0.08 0.06 0.04 0.02 103.5 104 105 102.5 103 104.5 105.5 102 Momentum[MeV/c]

Nucleus

21st ICEPP Symposium@長野県白馬村岳美山荘

e

COMET実験 Phase-II(2020)

2015/02/11

ストローチューブ飛跡検出器

磁場に沿って螺旋運動する荷電粒子の飛跡を検出する。下流の電磁カロリメータと組み合わ せて、<u>粒子識別</u>・<u>運動量測定</u>を行う。

構成は

2015/02/11

ストローチューブ飛跡検出器

検出原理(ストローチューブチェンバー断面)

要求性能

- ・高い運動量分解能 … 真空中で動作・低物質量
- ・高い係数率(>1 [kHz/straw])

2015/02/11

仕様案

ストロー	直径	マイラー厚	カソード材(厚さ)	(補足)
NA62	9.75mm	36µm	Cu(50nm)+Au(20nm)	CERNで実績あり。
COMET-20µm	9.75mm	20µm	AI(70nm)	完成!
COMET-12µm	9.75mm	12µm	AI(70nm)	鋭意製作中。。
	ガス Ar/C2H6 (Default)		泊入し	
			准百比	
			50:50	
	Ar/CO ₂		未定	

2015/02/11

研究開発@九州大学

■COMET実験用に開発されたCOMET-20µmストローチューブを使って、信号が得られるか。

♣Ar/CO₂混合ガスを用いた場合、どのような信号が得られるか。

これらを評価するために、⁵⁵Fe線源(5.9keV X線)と、小型プロトタイプの**1本チェンバー**を用いる。

研究開発@九州大学

▲COMET実験用に開発されたCOMET-20µmストローチューブを使って、信号が得られるか。

Ar/CO2混合ガスを用いた場合、どのような信号が得られるか。

これらを評価するために、⁵⁵Fe線源(5.9keV X線)と、小型プロトタイプの**1本チェンバー**を用いる。

信号試験 (Ar/C₂H₆)

� 信号 (w/o preamp)

2015/02/11

信号試験 (Gas: Ar/C₂H₆)

2015/02/11

研究開発@九州大学

■COMET実験用に開発されたCOMET-20µmストローチューブを使って、信号が得られるか。

♣Ar/CO₂混合ガスを用いた場合、どのような信号が得られるか。

これらを評価するために、⁵⁵Fe線源(5.9keV X線)と、小型プロトタイプの**1本チェンバー**を用いる。

信号試験 (Gas:Ar/CO₂)

波形解析 (Gas:Ar/CO₂)

2015/02/11

Ar/CO2 混合比

 1400V
 1600V
 1800V
 2000V

 ● … 信号の見え始め
 × … アフターパルスの見え始め

ガスの混合比によって、信号の印加電圧依存性が変化した。

Ar は W値(電子・イオン対生成エネルギー)が小さいので、Ar が多い方が **電子なだれによって生成される電離電子が多く**、低い印加電圧でも信号が見える。

2015/02/11

まとめ・今後

✤ COMET実験とは

- ・µe conversion (荷電レプトンフレーバー保存を破る反応)を探索する。
- ・茨城県のJ-PARCにて、Phase-I(2016)、Phase-II(2020)を計画している。

◆ 九州大学におけるストローチューブ飛跡検出器の研究

- ・COMET実験用に開発された<mark>低物質量のストローチューブ</mark>を用いて、ガス増幅に よる信号が確認された。
- Ar/C₂H₆よりも安価で安全な候補として、
 Ar/CO₂を用いた信号試験を行った。

◆ 今後の方針

- ・シミュレーションを用いた確認
- ・より大型のプロトタイプでの試験

2015/02/11

ストローチューブ飛跡検出器

5つのステーション/各ステーションは4層構造/多数のストローチェンバー

- ・1層あたりのストローチェンバーは、およそ100本。
- ・ストローチェンバーの長さは 64 108 cm。

2015/02/11

1本チェンバーの仕様

2015/02/11

2015/02/11

2015/02/11

Straw Tube Schematics

Elongation Measurement

2015/02/11

Gas Leakage Study

1-straw chamber

Evaluation chamber in order to evaluate the mechanical performances of COMET straw quickly.

(introduced by Hajime Nishiguchi, in COMET-CM14)

Pressurize Measurement

Pressurize Measurement : Set Ups

Pressurize Measurement

Pressurize Measurement : Result

Pressurize Measurement

Pressure drop was measured.

2015/02/11

Vacuum Build-Up Measurement

2015/02/11

Vacuum Build-Up Measurement

Vacuum Build-Up Measurement : Result

Build-Up Measurement

2015/02/11

Vacuum Build-Up Measurement

Vacuum Build-Up Measurement : Result(Log scale)

Build Up (COMET-20um)

Analysis

In order to compare "Pressurize measurement" and "Vacuum build-up measurement" on a level playing field,

$$PV = Nk_BT$$
$$\iff \frac{dN}{dt} = \frac{V}{k_BT} \cdot \frac{dP}{dt}$$

By using this formula in the case of 1 atm pressure difference, these results are

Set Ups	Leakage rate[ml/min]	
Pressurize measurement	(2.1±0.2)×10 ⁻²	
Vacuum build-up measurement	(2.2±0.5)×10 ⁻²	

These results are consistent.

2015/02/11

Where is the Leakage Source?

2015/02/11

Where is the Leakage Source?

Gas manifold

2015/02/11

Where is the Leakage Source?

Straw diffusion

To analyze in the same way,

(1.4±0.3)×10⁻³[ml/min]

This value is much smaller than 1-straw chamber result.

From these results, leakage sources are mainly **gas manifold** and **bonded zone**.

Double Peak of Signal

26-30/Jan/2015

COMET CM15@KEK/J-PARC, Japan

波形解析 (Gas: Ar/C₂H₆)

2015/02/11

アフターパルスの発生原理

アフターパルスの発生原理

光電効果が原因である証拠

クエンチガス(CO₂)が増えるとアフターパルスが減る。
 (増幅の際に生じる紫外線がクエンチガスに吸収されるため)

アフターパルスが等間隔である。
 (電子がストロー内壁からワイヤーまでドリフトする時間に対応)

3. 2.で予想される電子のドリフト速度が約 5 cm/µsec である。 (ガス中の電子の典型的なドリフト速度)

」壁で光電効果

「アフターパルスが発生しない」という条件を、ガス混合比や印加電圧を 今後決定する際の指標の一つとする。

After Pulse Analysis

To define quench efficiency as

