J-PARC KOTO実験 最初の物理結果までの道のり

京大 <u>前田 陽祐</u> for the KOTO collaboration 2015年2月11日 第21回 ICEPPシンポジウム 於 白馬

Maeda Yosuke, Kyoto University

terials and Life ♦KOTO = K⁰ at TOkai Experimental Faci ハドロン 茨城県東海村J-PARCでの (Hadron Han) 実験施設 中性K中間子稀崩壊 $K_1 \rightarrow \pi^0 v v$ 探索実験 ◇K_I →π⁰√√崩壊 (Br ~ 10⁻¹¹) **CP** violation **◇s→d遷移**: V_{td} K_I^0 標準理論では強く抑制 ◇理論的不定性が小さい →新物理に高い感度をもつ ループダイヤグラム ◇KOTO実験で世界初観測を目指す →未知の粒子が寄与 出来る可能性 ◇現在の上限値(<2.6×10⁻⁸)を3桁更新

J-PARC

MR

Neutrino Facility

Linac

RCS

Maeda Yosuke, Kyoto University

解析の手順

◇データ

◇2013年5月19-23日 (~100hのデータ)

◇ビーム強度:24kW,金ターゲット

◇解析の流れ

analysis of calibration mode

 K_L →3 π^0 : br=19.25% K_L →2 π^0 : br=0.09%

K山間ヱバックグラウンド(BC)				
	<mark>_K_の崩</mark>	<mark>壊モード iment</mark>		
◇シミュレーション(MC)を用いる		分岐比(br)		
◇各モードに応じた見積もりが必要	K _L →πeν	40.6%		
$ ^ $	Κ _L →πμν	27.0%		
	K _L →3π ⁰	19.5%		
◇バックグラウンドのメカニズム	$K_L \rightarrow \pi^+ \pi^- \pi^0$	12.5%		
	$K_L \rightarrow 2\pi^0$	8.6×10 ⁻⁴		
◇偶発事家のハイルアッフ	Κ _L →2γ	5.5×10 ⁻⁴		
◇K _L →π ⁺ π ⁻ π ⁰ :下流での荷電π [±] 反応				
◇K _L →3π ⁰ :カロリーメータ周りの不感物質				
◇ K _I →πeν, πμν:荷電粒子検出器の不感率				
◇K→2γ : 真空膜でのK_の散乱				
◇K _L →2π ⁰ は直接大統計サンプルを生成して見積もり				

パイルアップ起源のBG

 ◇veto判定にはエネルギーと タイミングの両方を用いる
 ◇偶発事象による検出ミス
 ◇時間計算方法を改善
 ◇半値時間(Constant Fraction) → ピーク時間に変更
 ◇複数ピークの場合:大きい方 → 基準値に近い方を採用
 ◇波形シミュレーションを用い見積もり: 0.016±0.016イベント
 ◇後は波形fitを行うことで更に背景事象を削減

中性子BG

中性子BG

◇実験感度(Single Event Sensitivity): 1.29×10-8

◆先行実験(E391a):1.11×10⁻⁸

◆100時間のデータで同じレベルの感度

◇実験感度(Single Event Sensitivity): 1.29×10-8

◇先行実験(E391a):1.11×10⁻⁸

◆100時間のデータで同じレベルの感度

◇KOTO実験はproposal提出から7年の準備期間を経て、2013年5月に最初の物理ランを行った。
 ◇100時間という短いデータ取得期間で、先行実験と同レベルの感度を達成。

◇新物理へのアプローチとしてはこれからが本番. ◇本解析で得られた知見を元に、各種アップグレ ードを行っている.

◇K_LBG:下流部のveto強化 等

◇中性子 BG : ビームプロファイルモニターの追加 等

backup slides

 $K_{\tau}^{0} \rightarrow \pi^{0} \nu \overline{\nu}$

Maeda Yosuke, Kyoto University

The remaining event

event display - Csl energy (run00016887_node014_file6_g2ana.root node14 DstEntryID : 10974)

J-PARC K^OTO experiment recconstructed values rec vertex : z=4437.6mm, 211.0ns vertex time difference = 0.0 ns

kinematic cut set

♦ extra cluster

- cluster with energy<20MeV
 (collateral cluster)
 </pre>
- ◇veto if exists and its vertex time
 is within ±10ns
 from event vertex time

CsI single crystal veto and π⁰ kinematic cut

variable	cut value
2γ total energy	>650MeV
extra cluster	>±10ns
Eθ	>2500MeVdeg
cluster distance	>300mm
γ energy	>100MeV, <2000MeV
γ position	>150mm (XY), <850mm (R)
energy ratio	>0.2
shape χ^2 (new definition)	<4.6
projection angle	<150deg
COE	>200mm (R)
vertex time difference	<±2ns
π^0 kinematic cut	default
cluster size	>4
cluster RMS	>10mm
CsI single crystal veto	<10MeV (200mm) - 3MeV (600mm)
min. distance from dead ch	>53mm
kinematic NN	>0.67
cluster shape NN	>0.8

15/02/10

a=52.7654

b=174.999

coe value [mm]

800

1000

600

(by energy and position of 2γ)

400

COE

COE cut

Output the second se requiring large COE online veto effect Ioss is estimated of COE cut efficiency ♦ >180mm → >200mm ♦ add weight according to 0.6 the COE value $1 + \exp(-(x+a)/b)$

0.4

0.2

200

Integr χ²/m Prob

p0 p1

veto cut set

◇veto energy definition

max. energy among modules whose timing is within veto window (except BHPV)

in case of BHPV, coincidence among neighboring modules

variable	cut value
CC03-06	<3MeV (±15ns)
CC04-06 scinti	<1MeV (±15ns)
CBAR	<2MeV (±30ns)
FBAR, NCC	<2MeV (±20ns)
OEV	<2MeV (±10ns)
CV	<0.2MeV (±40ns)
BCV	<1MeV (±30ns)
LCV	<0.6MeV (±15ns)
BHCV	<0.3MeV (±7.5ns)
BHPV	<3modules (±7.5ns)
online veto (only for MC)	CV, CBAR, NCC, CC03

are searched and the number of coin. modules whose timing is in veto window is used for veto decision

◇データは125MHz FADCで波形を取得 →simulation上でも波形を考慮

◇波形生成

◇Geantのステップ毎のエネルギー. 時間情報を波形に変換し、足しあわせ.

◇検出器応答

◇出力の位置依存性や光の伝播, 光子数の統計揺らぎ等を考慮

◇アクシデンタルhit

先子釵の統計揺らざ寺を考慮 アクシデンタルhit ◇ランダムトリガーでの波形データを 生成した波形にoverlay → ノイズや 偶発的 hitを 再現

 $K_1 \rightarrow 2\pi^0$: MCで残っているイベント

Maeda Yosuke, Kyoto University

 $K_1 \rightarrow 2\gamma BG$

分岐比:0.055%

Maeda Yosuke, Kyoto University

 $K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

◇下流検出器のvetoを外したときにBGとなるイベント について、下流に抜けたπ[±]のみを繰り返しsimulation し、統計を稼ぐ

◇データの500倍程度の統計 ◇p_T閾値を150MeV/cとすることで BGを無視出来るレベルまで低減可能

>130MeV/c → >150MeV/c BG:1/100以下 signal acceptance:84%

 $K_1 \rightarrow 3\pi^0$

◇終状態が6γで余剰粒子の数は多いが,分岐比も大きい.

◇十分な統計のfull simulationを作るのは困難 →各検出器の応答をweightで評価することで 高統計なMCサンプルを得る(fast simulation)

max. energy deposit among modules in CV rear plane [MeV]

Maeda Yosuke, Kyoto University

semi-leptonic崩壊

NCC Events

• w/ loose kinematical cut

nent

Neural Net Cut – 1

♦ kinematic NN

5 input parameters

- -Hit position of a cluster with higher energy.
- -Angle between two clusters on the Csl calorimeter
- -Distance between two clusters
- -Energy ratio between two clusters (E_min/E_max)

24

-Time difference between two clusters

Neural Net Cut – 2

♦ Shape NN

- 12 input variables
 - gamma energies($E_{\gamma 1}, E_{\gamma 2}$)
 - Angles of two gammas to the beam axis(θ_{r1}, θ_{r2})
 - Tree types of RMS
 - RMS,RMSV,RMSH

h1

h1

2500

2000 1500

h1

ハドロンクラースターBG

ー次ビームラインからの影響

◇シールドの弱い部分から, ー次ビームからの散乱粒子が 検出器に入り,カウントレートが オーダー上がっている. ◇水タンクを設置する事で軽減

Maeda Yosuke, Kyoto University

detector counting rate

◇MB

CV

black : rate by TMon trigger red : rate by clock trigger blue : MC

J-PARC K^oTO experiment

統計量:データの約3倍

◇全ての事象選択を行った結果 →信号領域にイベントは残らず veto検出器のinefficiencyは低く抑えられている

J-PARC K^oTO experiment

◇データは125MHz FADC + shaper で波形を取得 →1イベントに1波形を想定

◇高レート環境 →アクシデンタルhitが発生

◇タイミングが誤って計算され、vetoし損ねてしまうこと によりinefficiencyが発生(masking effect)

◇例えば, single rate 10kHz

→ 0.5%の確率で500nsにアクシデンタルhitが混入

◇高レート環境 →アクシデンタルhitが発生

◇タイミングが誤って計算され、vetoし損ねてしまうこと によりinefficiencyが発生(masking effect)

◇例えば, single rate 10kHz

→ 0.5%の確率で500nsにアクシデンタルhitが混入

MCに於ける波形simulation

波形generation

50

30

60

FADC sampl

◇CVの場合

Maeda Yosuke, Kyoto University

30

40

50

60

10

0

20

 $\frac{(x-\mu)^2}{(\sigma_0 + a(x-\mu))^2}$

μ=36.024ns

σ₀=48.30

Aexp

waveform analysis

Odetectors with 125MHz FADCs ♦ one energy and timing for each event and each channel energy : integration of 64 sample \diamond timing : CF timing for Csl oparabola fit timing for veto detectors 3 points around the peak are fitted by parabola function more robust to pulse-overlapping than CF timing more accidental loss Odetectors with 500MHz FADCs \diamond Multi-hits are considered. Oata production of latest version

(pro4) has completed.

MB inefficiency function

J-PARC K^oTO experiment

MB inefficiency to mono-energy γ is checked again w/ waveform simulation

Almost same inefficiency is achieved w/ parabola fitting method.

comparison w/ Jun2012 run

Compare inefficiency w/ result of Jun2012 run

J-PARC K^oTO experiment

-500

0

500

1000

14/02/06

prospect (ii)

10

Kyoto University

20

30

γ incident angle discrimination

J-PARC K^oTO experiment

masking event

In the second state of the second state of

FADC sample

run00016845 node105 file6 EventNo : 306 CBAR ChID : 3

event display - Csl energy (g2ana00016845_node105.root node105 DstEntryID : 15168)

*module40 have hits w/o masking, but its energy is too small

masking event

run00016897, node014, file6 EventID 484 (DstEntryID : 15640) Hit in BCV mod20

event display - Csl energy (g2ana00016897_node014.root node14 DstEntryID : 15640)

run00016897 node014 file6 EventNo : 484 BCV ChID : 120

J-PARC K^oTO experiment

◇full cut : 16239.5685 ◇S.E.S. = 1.283e-8 ◇pT>130MeV/c : 19279.99 ◇(>150MeV/c)/(>130MeV/c) = 0.8423 ◇MB, FB 1MeV threshold : 12344.6 ◇(1MeV thre.)/(2MeV thre.) 0.7601

Maeda Yosuke, Kyoto University