



### MEG II実験のための背景ガンマ線同定用 陽電子検出器の開発の現状

### 中浦 正太、MEGII collaboration (the University of Tokyo) 21st ICEPP Symposium 11 Feb. 2015







- ・ RDC紹介
- ・MPPC選定
- ・検出器形状最適化
- ・スケジュール
- ・まとめ







# RDC紹介





### **IEG** signal *background*







### RDCの導入背景



### バックグラウンドとなる光子数(μ粒子崩壊1イベントあたり)





## RDCの導入背景



### バックグラウンドとなる光子数(μ粒子崩壊1イベントあたり)

RMD AIF [γ線のエネルギー>0.9×mμ/2を要求]



#### 検出器内の物質軽減ではRadiative Muon Decay(RMD) によるバックグラウンドイベントは減らない! →別の方法で減らすことはできないか?

### **RDC : Radiative Decay Counter**



### コンセプト

 ・アクシデンタルバックグラウンドにおける RMD起源のバックグラウンドァには
 低運動量陽電子(2~5MeV)が付随
 ・これを観測してRMD起源のバック
 グラウンドアを同定する!



RDC導入のメリット



★ detection efficiencyに依存(50%~80%)



### MEG Upstream detector





・*µ*+ビームに影響を与えずにRMD起源の 低運動量e+を検出する必要

#### ・シンチレーションファイバー

- ·厚み250µm、704本 両端でまとめてMPPCで読み出し
- ・時間情報取得(*γ*とのcoincidence)
- E depositの違いでµとeを分離







(Michel decayとRadiative muon decayのseparation) MPPCで読み出し





### **MPPC** 建定





## IEG MPPCの候補とポイント



#### MPPCの候補

- ・クリスタルの信号読み出しにMPPC(3×3mm<sup>2</sup>)を用いる。 候補は4つ。
  - ・50 $\mu$ m, 25 $\mu$ m, 15 $\mu$ m (ピクセルサイズの違い)
  - ・50µm, crosstalk suppress model(クロストーク抑制機構)





### ・ピクセルサイズによる違い

・gainはピッチサイズ<sup>2</sup>に比例

→currentの大小やS/Nの良し悪しはピクセルサイズに依存

・ピクセルサイズが小さい(単位領域あたりのピクセル数が大きい) とsaturationは小さい **21st ICEPP Symposium** 











### saturation



- ・数MeV領域ではMPPCピクセルでのsaturationによって波形変化が 観測され始める→波形解析によるpileup分離には好ましくない
- ・それぞれ分解能が最良のovervoltageで宇宙線データを取得







current









- ・gainをdarkのcharge分布から算出
- ・gainはMPPCのキャパシタンスCに比例
- ・Cは[ピクセルサイズ]<sup>2</sup>に比例 →おおむね再現
- ・overvoltageが同じであれば pixel sizeの大小はS/Nの大小
- ・すべての候補でsingleが観測 →すべてok



性能比較(まとめ)



### 分解能が最良のovervoltageでは

| MPPC type             | 分解能 | saturation | current | S/N   |
|-----------------------|-----|------------|---------|-------|
| 15um                  | ok  | best       | best    | worst |
| 25um                  | ok  | ok         | ok      | ok    |
| 50um                  | ok  | worst      | ok      | best  |
| 50um<br>(CT suppress) | ok  | bad        | worst   | best  |

- ・波形解析によるpileup分離の観点から、50µmとCT suppressは
   好ましくない
- ・15 $\mu$ mはS/Nが最も悪い
- ·25µmが余裕をもった運用に適している

overvoltageを下げれば saturation, currentは小さくなる













# 検出器形状最適化





### motivation





(RMDはアのエネルギーが48MeV以上を要求)

- ・低エネルギー領域でのピークの原因は何か?
- ・Radiative muon decayとMichel decay を区別したい

→これら2つの分布をよりよく分離できないか?

#### 検出器ジオメトリの変更で上記2点を調べる

#### 条件

- ・targetで静止したmuonの
- 標準模型における崩壊
- ・方向:4π
- ・トリガー条件:
- プラスチックシンチレータでのヒット
- ・クリスタル、プラスチックシンチレータの 、 **厚みを変化**させる



### simulation結果



energy distribution in DS(e from MD)



・E=O付近でのピークは、
 陽電子がドリフトチェンバーにあたり
 対消滅で生じた r が入射するイベントと確認
 ・プラスチックシンチレータの厚み変更等では改善できない
 ・プラスチックシンチレータの厚みはdefaultの5mmで決定



## simulation結果









# スケジュール





スケジュール





・今年の秋から始まるMEG II pre-Engineering runに向けて準備を進める

- ・クリスタルからの信号読み出し方法をR&D中(MPPC直列接続?)
- ・クリスタル用MPPC100個は到着済(2~3月でmass test)
- ・その後クリスタル、プラスチックシンチレーター等のtestも開始
- ・並行してRDC検出器のホルダー設計・生産をおこなう







- ・バックグラウンド事象を積極的に同定する新しいコンセプトの 検出器RDCを開発中
- ・RDCの導入により感度は最大30%程度の改善が見込まれる
- ・下流側検出器についてはMEGIIへの組み込みが承認済であり 作成に着手している
- ・クリスタル読み出し用MPPCは25µm pitchを使用する
- ・実機用の100個が到着済
- ・クリスタルは2cm、プラスチックシンチレータは5mmの 厚みで最終決定し発注済
- ・11月のマウントに向けテストを随時行う









# backup













### MEG SiPM(Silicon photomultiplier)





- ・複数のAPDピクセルからなる光検出器
- ・逆バイアスをかけガイガーモードで駆動
- MPPC S12572-015,-025,-50
- ・低アフターパルス

|          | -015P              | -025P              | -050P                 |
|----------|--------------------|--------------------|-----------------------|
| 有効受光面サイズ | 3×3mm <sup>2</sup> | 3×3mm <sup>2</sup> | 3×3mm <sup>2</sup>    |
| ピクセルサイズ  | 15µm               | $25 \mu$ m         | $50  \mu  \mathrm{m}$ |
| ピクセル数    | 40000              | 14400              | 3600                  |



### 宇宙線DAQ setup





### ・数十MeVの領域:宇宙線

・6×2×0.5cm<sup>3</sup>のプラスチック シンチレーターでトリガー

#### simulation



・ランダウピークのエネルギー値を simulationで調べる
・LYSO密度7.3g/cm<sup>3</sup>
・天頂角分布を実装
・ピークは20MeV程度と算出

21st ICEPP Symposium



### 直列接続の候補





- ・高いヒットレート →pileup起こりやすい
- ・中心付近では接続数小







cm



5000

4000

3000

2000

1000

0

10

cm

8

6



- stopping rate :10<sup>8</sup>[1/sec]
- ・中心付近ではEdep大
- ・直列接続されているcrystalでも Edepは違う (最大1.6倍)

#### **21st ICEPP Symposium**

Edep per sec[GeV/sec]







・直列接続されたMPPCがカップルした クリスタルでのEdepに違いがあると ゲインが変化する可能性





- ・MPPCでの電流はクリスタルでのEdepに依存
- ・電流は共通(直列)
- ・Edepが違えばgainも違う





### spring probe





- ・ MPPCは 表面実装型
- ・読み出しにはspring probeを用いる











### 読み出し回路









ハイブリッド接続



