

21ST ICEPP Symposium 東北大学 ニュートリノ科学研究センター,白旗 豊 2015/02/10

1,モチベーション

液体シンチレータを用いた反ニュートリノの検出器では低エネルギーの ニュートリノの飛来方向検出が出来ない

大型検出器

- •地球ニュートリノの飛来方向を知ることが出来るようになる
- →地球の内部構造の理解が深まる(地球内部の放射性熱源の分布、マントルの構成)
- 地球ニュートリノと原子炉ニュートリノとの区別がつけられ、運転状況に依存しない高精度
 データが得られるようになる

小型検出器(200L size)

- 方向検出の原理検証
- 原発の非破壊診断への応用

2,検出原理

•陽子により中性子が捕獲される

・中性子が長距離移動してしまうことで、反ニュートリノの方向情報を失う
・捕獲点の特定が出来ない

● Liにより中性子が捕獲される

・中性子捕獲断面積が大きいので、ニュートリノの
 方向情報を失う前に中性子を捕獲出来る

•捕獲点の特定が出来る

4

① LiLSの開発

LiLSの構成

PC:界面活性剤(TritonX-100)=83%:17% PPO=5g/I, LiBr・H₂O(aqua)=37g/I,⁶Li=0.15wt% (enrichを仮定(⁶Li 95%))

- •性能評価 •測定
- → 発光量 → delayed energyのvisible energyの測定
- → 減衰長 → 波形弁別(γ、 α)

② イメージング検出器の開発

- •レンズ+MultianodePMTによる撮像
- → レンズの設計
- → シミュレーションによる評価

~性能評価~

	Li[wt%] ⁶ Li[wt%]	減衰長[cm@400nm]	発光量[%] (N₂ purging)
目標値	2.0 0.15	≧60	≥100(Kamland LS)
結果	2.0 0.15	167.9cm	0.3 (<mark>88.5</mark>)

透過率

***cyclohexane:透過率 -> about 100%

: 屈折率 -> 液体シンチレータ(KamLAND LS)のものとほぼ同程度

~Delayed energy~

Delayed energy の測定

α線や³Hはクエンチングによって実際に見えるエネルギーはQ
 値より低くなる→実験によりエネルギーを見積もる

波形弁別のモチベーション

- α線とγ線の波形は異なっている
- Delayed signalを検出する際のBackgroundを削 減するために波形弁別性能を知りたい

LiLS→PC:界面活性剤(TritonX-100)=83%:17%,PPO=5g/l, LiBr・H2O(aqua)=37g/l,6Li=0.15wt%(enrichを仮定(6Li 95%))

例… KamLANDで使われている液体シンチレータ(KamLS)

→Dodecane:80%, PC:20%, PPO:1.36g/I

KamLS 波形弁別能力

β 除去効率:~40% (α 取得率:90%)

3.新しい検出器の開発

~波形弁別~

- Double Gate 法を使用
- α線とγ線のcharge ratioを比較
- → Charge ratio: Tail Charge/Total Charge

Peak Total Charge

Charge Ratio

9

~イメージング検出器(目標性能)~

prompt signalとdelayed signalを分離するために 高位置分解能のイメージング検出器が必要 なmultianodePMTを使用

~イメージング検出器(設計)~

3,新しい検出器の開発 ~イメージング検出器(分解能)~

距離(被写界深度)と結像面での像の大きさの関係

3,新しい検出器の開発~イメージング検出器(分解能)~

MA-PMT上で見える像の分布

光源:点光源を使用 MA-PMTはIpixelが約6mm

→ 4cm以下の分解能が達成されている事を確認

今後、geant4+Zemaxを使ったフォトンシミュレーショ ンにより現実的な実験に即した評価を行っていく予定

4,まとめ

反電子ニュートリノの方向検出は反ニュートリノ観測の
 精度向上のための有効な手段である

 方向検出のための新しい検出器の開発・評価を行った
 (1) Liを含有した液体シンチレータ(完成)
 (2)高位置分解能の光検出器(デザインは完成、geant4とZemaxを使った フォトンシミュレーションによる性能評価中)

5,今後

Source: muon, ²⁵²Cf source

① 実験室系での測定

開発したイメージング検出器でdelayed signalを撮像する事が出来るかのテスト(I年以内)

Source: neutrino source

② 小型検出器を作成し高レートのニュートリノ源の近くに置き方向検出の原理検証を

行う(数年内)

Backup

Candidate

Candidate ①→⁶Li(940 barn)

⁶Li (n, α)reaction

 $n+^{6}Li - >\alpha + ^{3}H(Q=4.8MeV)$

Candidate $\bigcirc \rightarrow {}^{10}B(3835barn)$

¹⁰B (n, α) reaction

n+10B->7Li*+ α (BR=94%,Q=2.3MeV) 7Li* ->7Li+ γ (E γ =0.48MeV) n+10B->7Li+ α (BR=6%,Q=2.8MeV)

2,検出原理~逆β崩壊~

Resolution(LiLS)

vertex reconstruction and angular resolution of ⁶Li are best because ¹⁰B emits γ ray when ¹⁰B captured neutron. Anti-neutrino event number

Heat capacity 3.3 GW distance 100m Volume 200L

$\overline{\nu}_e$: 200 event/month

MC Simulation

Delayed Energy Measurement 300~600ch ADC Cut 600~1000ch ADC Cut

Circuit diagram and Timing Correlation Diagram

Charge(Cf Source)

Use 5~200µsec time cut area in my study

Selection of $(\alpha + {}^{3}H)$ event

I. Charge \rightarrow Time cut 5~200µsec 2. Charge peak cut \rightarrow Confirm time dependence and decay constant 3.Confirm position of gamma Charge Ratio by Cs source

4. α event will be high charge peak area

Total Charge

200

400

600

800

1000

events

250

200

150

100

50

450

350 300 250

[Tail Charge

Cf source

5~200µsec time

cut histogram

Charge mV

Comparison between Cf and Cs source data $(5\sim 200 \mu sec)$

BackGround Rejection and γ Rejection Efficiency (Charge Ratio Cut 0.25~0.37)

 $0~5\mu$ sec cut

5~200µsec cut

200µsec~ cut

Total Charge vs Charge Ratio(different range)

5~200µsec cut

Time vs Charge

Charge Ratio Cut

simulation

Circuit diagram

64ch multianode PMT上で

見える像の分布

フォトン数の見積もり

(p.e.)=(フォトン数(4000[/MeV]))×(delayed energy(540keV))×(減衰長(167cm))×(coverage) ×(レンズの透過率(97%))×(量子効率(34%))×5(レンズを5set使用)

Source: muon, ²⁵²Cf source

① 実験室系での測定

開発した光検出器でdelayed signalを撮像する事が出来るかのテスト(I年以内)

Source: neutrino source

出の原理検証を行う(数年内)

dream ③ 大型検出器にLiLSと光検出器を実装し地球ニュートリノの観

測を行う

~ LiLS~

43

リチウム化合物は水に溶けやすく油に溶けにくい ――

界面活性剤を使用し水溶液に してから油に溶かす

発光量、減衰長が良くなる界面活性剤を選定

	Li[wt%] ⁶ Li[wt%]	減衰長[cm@400nm]	発光量[%]
目標値	2.0 0.15	≧70	≧100(kamland liquid scintillator)

LiLSの最終レシピ PC:界面活性剤(TritonX-100)=83%:17% PPO=5g/l, LiBr・H₂O(aqua)=37g/l, ⁶Li=0.15wt%(enrichを仮定(⁶Li 95%))

Not Enrichment	⁶ Li:7.59%, ⁷ Li:92.41%
Enrichment	⁶ Li: 9 5%, ⁷ Li:5%

Neutrino Energy

