原子核乾板によるニュートリノ研究

Study of Neutrino with Nuclear Emulsion

Tsutomu Fukuda (Toho Univ.)

第21回 ICEPPシンポジウム, 2015年2月10日, 白馬村岳美荘

Nuclear Emulsion

Result from the OPERA experiment

New Neutrino Experiment at J-PARC

What is Nuclear Emulsion?

3D tracking detector with submicron position accuracy

Photographic Film technology

- Nuclear Emulsion is a special photographic film.
- Signal is amplified by chemical process.

50 micron

Recorded as silver grains

Resolution of 0.3 µm along the particle passing through line

	Merit	Image detection
Film camera	High resolution	ハロゲン化銀(Sliver halide) 光のエネルギーが起こす化学変化を利用した光化学反応。
Digital camera	Real time	電荷結合素子(Charged-Coupled Device) 光のエネルギーを電気エネルギーに変換する光電変換。

Largest Digital Camera ATLAS detector

Largest Film Camera OPERA detector (~10²⁰ AgBr crystals)

Contribution for fundamental physics

- 1896 (A. H. Becquerel) Discovery of Radioactivity
- 1947 (C. F. Powell et al.) Discovery of π
- 1971 (K.Niu et al.) Discovery of charm particle in cosmic-ray
- 2001 (K.Niwa et al.)
 - Direct observation of V_{τ}

7

1896

1971

Result from OPERA

The OPERA Detector

Analysis Status

Beam: 5year (965days), 17.97 × 10¹⁹ p.o.t.

80% of proposal.

Location & Decay Search: 6636 neutrino events located . 6190 events decay search done.

<u>3rd ν_τ candidate events</u>

<u>4th v_{τ} candidate events</u>

(Mar. 2014)

$\tau \rightarrow$ 1h decay channel, signal distribution and the values of this event.

Neutrino Oscillation Analysis

18

PTEP

Letter

Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment

OPERA Collaboration

N. Agafonova¹, A. Aleksandrov², A. Anokhina³, S. Aoki⁴, A. Ariga⁵, T. Ariga^{5,*}, T. Asada⁶, D. Bender⁷, A. Bertolin⁸, C. Bozza⁹, R. Brugnera^{8,10}, A. Buonaura^{2,11}, S. Buontempo², B. Büttner¹², M. Chernyavsky¹³, A. Chukanov¹⁴, L. Consiglio², N. D'Ambrosio¹⁵, G. De Lellis^{2,11}, M. De Serio^{16,17}, P. Del Amo Sanchez¹⁸, A. Di Crescenzo^{2,11}, D. Di Ferdinando¹⁹, N. Di Marco¹⁵, S. Dmitrievski¹⁴, M. Dracos²⁰, D. Duchesneau¹⁸, S. Dusini⁸, T. Dzhatdoev³, J. Ebert¹², A. Ereditato⁵, R. A. Fini¹⁶, T. Fukuda²¹, G. Galati^{16,17}, A. Garfagnini^{8,10}, G. Giacomelli^{19,22,†}, C. Goellnitz¹², J. Goldberg²³, Y. Gornushkin¹⁴, G. Grella⁹, M. Guler⁷, C. Gustavino²⁴, C. Hagner¹², T. Hara⁴, T. Hayakawa⁶, A. Hollnagel¹², B. Hosseini^{2,11}, H. Ishida²¹, K. Ishiguro⁶, K. Jakovcic²⁵, C. Jollet²⁰, C. Kamiscioglu^{7,26}, M. Kamiscioglu⁷, T. Katsuragawa⁶, J. Kawada⁵, H. Kawahara⁶, J. H. Kim²⁷, S. H. Kim²⁸, N. Kitagawa⁶, B. Klicek²⁵, K. Kodama²⁹, M. Komatsu⁶, U. Kose⁸, I. Kreslo⁵, A. Lauria^{2,11}, J. Lenkeit¹², A. Ljubicic²⁵, A. Longhin³⁰, P. Loverre^{24,31}, M. Malenica²⁵, A. Malgin¹, G. Mandrioli¹⁹, T. Matsuo²¹, V. Matveev¹, N. Mauri^{19,22}, E. Medinaceli^{8,10}, A. Meregaglia²⁰, M. Meyer¹², S. Mikado³², M. Miyanishi⁶, P. Monacelli²⁴, M. C. Montesi^{2,11}, K. Morishima⁶, M. T. Muciaccia^{16,17}, N. Naganawa⁶, T. Naka⁶, M. Nakamura⁶, T. Nakano⁶, Y. Nakatsuka^{6,*}, K. Niwa⁶, S. Ogawa²¹, N. Okateva¹³,

Cosmic ray analysis using OPERA detector

Emulsion lav

θ

(|tan0|<0.6)

95%

Application of large angle tracking technique developed for OPERA BKG study

drive

CMOS Camera

Objective lens

XY Stage

Tracking efficiency with wide angle acceptance

 $|\tan \theta| = 3.0$

2.5

extension

3.5

Itanel

Efficiency (06

> 70 60

50

40

30

20

10

 $|\tan \theta| = 1.0$

0.5

conventional

angle acceptance

|tan θ |=2.0

1.5

(1) v_{τ} appearance event search in atmospheric neutrino oscillation

② Study of High energy cosmic ray

T. Fukuda et al., 2014 *JINST* 9:P12017

20

Study of neutrino with Nuclear Emulsion

Target mass ~ 100kg

- 1978-1983 Fermilab E531 ~ charm physics, $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation
 - 1990-2000 CERN WA95 CHORUS ~ 1 ton $v_{\mu} \rightarrow v_{\tau}$ oscillation, charm physics
 - 1994-2001 Fermilab E872 DONUT ~ 1 ton First ν_τ observation
 - 2008- CERN CNGS01 OPERA 1250 ton $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation, $\nu_{\mu} \rightarrow \nu_{e}$ oscillation

New Neutrino Experiment at J-PARC

- We are planning new experiments at J-PARC to study low energy neutrino interactions by introducing nuclear emulsion technique.
- The emulsion technique can provide good measurements with ultimate position resolution.
- Physics motivation is a detailed (exclusive) study of low energy neutrino – nucleus interactions for a variety of target (H₂O,Fe,C) and

cross section measurement of low energy V_e interaction and the exploration of a sterile neutrino.

23

Technical improvement

Readout technique

High Speed Scanning

HTS 9,000cm²/h, x100 faster

Large angle tracking technique

Detector technique

High Sensitive film

Time resolution

<u>Charge sign ID</u>

Advantage of Emulsion

- The aim of T60 is a **feasibility study** to make a future plan.
- We will expand the scale of detector gradually, step by step.

J-PARC T60 experiment

Proposal of an emulsion-based test experiment at J-PARC

Exclusive summary

A test experiment is proposed that equips Emulsion Cloud Chamber as a main detector in order to investigate environmental and beam associated background at the T2K near detector hall in J-PARC, optimal detector structure, and performance of newly developed nuclear emulsion gel. The aim of the experiment is a feasibility study to make a future experimental plan for the study of low energy neutrino-nucleus interactions and the exploration of a sterile neutrino.

J-PARC PAC endorsed as a test experiment (T60).

A collaborative project with some member of OPERA and T2K

Preparation of emulsion films

6 batch were produced.

Emulsion coating

Emulsion coating: Both sides of plastic base

Nuclear emulsion films for T60

Initial performance:

efficiency and noise density measurement based on grain counting.

Nuclear emulsion films for T60

Aging characteristics (fading effect):

efficiency and noise density measurement based on grain counting.

電子ビーム照射から現像までの経過時間 [Days]

T60 detectors

Emulsion Module

Track matching between ECC and INGRID by timing information

Monitoring sample

Small films for condition monitoring

Monitoring samples were also placed in front of the INGRIDs.

<u>OPERA</u>

- OPERA successfully collected data from 2008 to 2012. A total number of 17.97 x 10¹⁹ p.o.t. integrated (~80% of the nominal value).
- $4 v_{\tau}$ candidate events were found with 2.1 signal and 0.23 background events expected in the analyzed sample.
- Significance of the observation is 4.2σ

→ Observation of v_{τ} appearance in the CNGS beam. J-PARC

- We are planning neutrino experiments **at J-PARC** to study low energy neutrino nucleus interactions with nuclear emulsion.
- First of all, we carry out a test experiment at J-PARC (**T60**) for the feasibility study.
- We confirmed that the initial quality and the aging characteristics of newly produced emulsion films is kept good sensitivity & low noise.
- We will modify and confirm the details of next run based on the analysis result of T60.

π 中間子の発見 (湯川中間子)

- 1935 湯川秀樹 中間子論(核力の担い手として、質量が 電子の200~300倍の粒子が存在すべき)
- 1937 Anderson, Neddermeyer (霧箱) 宇宙線中に新粒子(実はµ粒子)を発見。 質量は湯川の予言とおりだが、物質との 反応断面積が小さ過ぎる。
- 1943 坂田昌一·井上健·谷川安孝 二中間子論(π→µ+v)
- 1945 Coversiら µ≠πの実験
- 1947 Powellら 上空での宇宙線の中にπ→µ+vの 崩壊現象を発見。
- 1949 湯川 ノーベル賞受賞
- 1950 Powell ノーベル賞受賞

LATTES, MUIRHEAD, OCCHIALINI and Powell; Nature 159, 694 (1947).

1970年代、欧米→加速器+泡箱など 日本→宇宙線+原子核乾板

原子核乾板は解析の非能率さ故に泡箱等 にとって変わられていた。日本には大きな 加速器がなく、宇宙線を利用していた。

原子核乾板を高温高湿環境(30℃,98%)に置き、潜像退行を促進 → 飛跡を消去する

OPERA film は、<u>Fuji Film ©で製造</u>される。

使用枚数

<u>59 films × 150,000 Bricks ~ 9,000,000 films</u>

Refresh – 蓄積した飛跡の消去 –

2003.5.26 塗布開始 2004.1.13 リフレッシュ開始 2005.3.17 初出荷 2007.4.25 最終出荷 (全3322箱)

Refresh Facility

2006年9月7日

CERNからニュートリノビームのテスト照射。 OPERAで初めて原子核乾板上にニュートリノ 反応からの飛跡を検出。

Electronic detector から Emulsion detector への接続を確認。

10սm

2007年10月3日

原子核乾板中でニュートリノ反応点を初検出。

Event analysis – ν test run –

大学建物の耐震工事のため、2008年度から 2010年度まで解析室を移転。

鉱山付近のお寺の庫裏に下宿させてもらう。

2008年度より本番開始!

v , のバックグラウンドの研究

%

$$\nu \ _{\mu} \xrightarrow{\text{oscillation}} \nu \ _{\tau} + N \rightarrow \tau^{-} + X$$

T粒子の崩壊様式

	Decay mode	BR(%)	
3rd	$\tau \rightarrow \mu \gamma_{\mu} \overline{\nu}_{\tau}$	17.36	
	$\tau \rightarrow e^{-} \nu_{e} \overline{\nu}_{\tau}$	17.85	
ist 4th	$\tau^{-} \rightarrow h^{-}(n\pi^{0}) \overline{\nu}_{\tau}$	49.52	
2nd	$\tau^{-} \rightarrow 2h^{-}h^{+}(n\pi^{0}) \overline{\nu}_{\tau}$	15.19	$\int 00$

$\tau \rightarrow hadron 崩壊に着目。$

<u>核破砕片の特徴</u>

- 電離損失が大きい。
- ほぼ等方的に放出する。

OPERA型ECCでの 系統的なハドロン反応の解析

• 2-10GeV/c π⁻のEvent by event の詳細な反応解析

Reconstruction of track data		2GeV	4GeV	10GeV
	Reconstructed tracks	584 tracks	913 tracks	2205 tracks
	Total track length	8.5 m	12.6 m	38.5 m
	Interactions	77 events	68 events	173 events

H. Ishida, T. Fukuda et al., Prog. Theor. Exp. Phys. 2014, 093C01

新型原子核乾板自動飛跡認識装置FTSの開発

Automatic Track recognition using GPU

(T. Fukuda et al., 2013 *JINST* 8 P01023)

47

- 自動飛跡認識アルゴリズムは従来のアルゴリズムを踏襲している。
- 自動飛跡認識部にはGraphics Processing Unit (GPU)を採用。

画像処理から飛跡認識までの全てをGPUで処理する自動飛跡読み取り装置を実用化

マルチスレッド化による駆動系と飛跡認識系の並列化

検出したッ、反応での核破砕片探索

<u>大角度飛跡自動解析</u>

<u>大角度に渡って自動認識された飛跡の角度精度</u>

<u>大角度飛跡自動解析の応用</u>

低エネルギーニュートリノ反応の研究

50

Detector Run (2015)

- We are planning a next exposure for "Detector Run" after summer shut down. (parasitically exposure with T2K (ex. Oct. 2015 ~ Mar. 2016))
- We are considering to set the water target ECC for the detector performance check to study $v-H_2O$ reaction in low energy region.
- We will submit this proposal to J-PARC PAC before this July.

