J-PARC/BL05における 中性子寿命測定実験: 2014年データ解析

角 直幸A

田中元気A,音野瑛俊B,吉岡瑞樹B,北原龍之介C,岩下芳久D,山田崇人E, 片山領E,東直E,横山晴道E,角野浩史E,山下了F, 榊原理紗G,杉野智昭G,広田克也G,清水裕彦G,北口雅暁H, 生出秀行I,関義親J,嶋達志K,三島賢二L,竹谷薫L,猪野隆L

九大理^A,九大 RCAPP^B,京大理^c,京大化研^D,東大理^E, 東大素セ^F,名大理^G,名大 KMI^H,CERN^I,理研^J,阪大 RCNP^K,高工研^L

2015/2/10 第21回 ICEPPシンポジウム @長野県北安曇郡白馬村 岳美山荘

中性子寿命導出方法

中性子をTPC(Time Projection Chamber)に導き両信号を数え上げ寿命を導出する。

中性子寿命導出方法

中性子をTPC(Time Projection Chamber)に導き両信号を数え上げ寿命を導出する。

β崩壊事象 と³He吸収事象

4

Time Projection Chamber (TPC)

ドリフト部 と MWPC面 (Multi Wire Proportional Chamber) の2つからなる。

- ▶ ドリフト部を荷電粒子が通過するとTPCの動作ガスが電離される。
- ▶ 電離された電子が鉛直にかかる電場で上方にドリフトされる。
- ▶ MWPC面まで到達した電子はアノードでカスケードを起こし増幅される。
- カスケードで発生したイオンはカソードに回収される。

5

飛跡情報

- X: アノード数 (na:number of anode)
- Z : カソード数 (nch:number of cathode high gain)
- Y : ドリフト時間 (Drift Time) 鳴ったアノードの内、最初と最後の立ち上がりの時間差 (cf.TPC高さ~30μs)
 - 飛程: TPC中でのトラックの長さ[mm]

Range = $\sqrt{(\text{na} \times \text{apitch})^2 + (\text{nch} \times \text{cpitch})^2 + (\text{DriftTime} \times v_{\text{drift}})^2}$

DC (Distance from bunch Center) イベントの端点が中性子バンチの中心からX,Z軸方向にどれだけ離れているか

6

モンテカルロ シミュレーション

カットの検出効率を評価する為、Geant4ベースに構築したMCでβ崩壊の各分布を再現した。

バックグラウンド事象の引き算

Time Of Flight (TOF) 陽子ビームをターゲットに入射してからの時刻 (40ms周期)

バックグラウンド事象

BG	特徴	見積方法	事象数
環境	環境γ線がTPC内部で電子をはじき出す 宇宙線μ粒子・TPCの放射化	Sideband領域	1478 ± 18
上流起因	ビーム上流で発生したγ線が TPC内部で電子をはじき出す	TPC直前の中性子シャッター閉時の データセット	270 ± 46
ガス起因	TPCガスによる吸収・散乱反応	ビーム軸外のイベントの外挿 Anode DC大 領域	164 ± 43
³ He	³ He吸収反応を β崩壊事象と間違える	³He分圧の異なるデータセットの比較	negligible
CO ₂	CO 2の中性子吸収反応でγ線を放出 反跳したCO2が1keVのエネルギーを落とす	MCシミュレーション	negligible
Σ_{j}	Sideband領域 M_{350} 300 200 150 100 100	Fiducial領域	10

まとめ と 今後

_

-

2	014年春にJ-PARC/BL05で取得し	,たデータの解析を行った。				
•	モンテカルロシミュレーションの開発					
•	β崩壊事象を抽出するカットの開発					
•	カットに伴う検出効率の評価	21日 DI 会場 21aDI 9:00~10:30				
•	バックグラウンド事象の評価	素粒子実験領域 中性子の物理				
		J-PARC/BL05における中性子寿命測定実験の現状 九大理、九大RCAPP ^A ,京大理 ^B ,京大化研 ^C ,東大理 ^D ,東大素セ ^E ,名大理 ^F ,名大KMI ^G ,CERN ^H ,理 研 ^I ,阪大RCNP ^J ,高工研 ^K 田中元気、角直幸、吉岡瑞樹 ^A ,音野瑛俊 ^A ,北原龍之介 ^B ,岩下芳久 ^C ,山田崇人 ^D ,片山領 ^D ,東直 ^D ,横山 晴道 ^D ,角野浩史 ^D ,山下了 ^E ,榊原理紗 ^F ,杉野智昭 ^F ,広田克也 ^F ,清水裕彦 ^F ,北口雅暁 ^G ,生出秀行 ^H ,関 義親 ^I ,嶋達志 ^J ,三島賢二 ^K ,竹谷薫 ^K ,猪野隆 ^K				
		 J-PARC/BL05における中性子寿命測定実験:2014年データ解析 				
		3 J-PARC/BL05における中性子寿命測定実験の系統誤差の評価				
玗	見在は、系統誤差の見積もりを行	っている。				

11

寿命の値は2015年春の物理学会で!? 乞うご期待!!

2015年4月からデータ取得を再開しより高統計へ

モチベーション

- ビッグバン元素合成のズレ (ヘリウム水素比 Yp = He/H)
- 遠方宇宙の直接探索 (Izotov:2013)
- 元素合成理論予測 (Planck:2013 と 中性子寿命 In-Beam, UCN との交点)
- 中性子寿命そのものの測定手法間でのズレ
- In-Beam : 中性子β崩壊で放出される陽子を数えて測定
- UCN : 中性子を容器に蓄積し生存した中性子を数えて測定
- → 新たな手法による中性子寿命の精密測定が求められている。

実験施設

- J-PARC (Japan Proton Accelerator Research Complex) ▶ 茨城県東海村にある世界最高強度を誇る陽子加速器
- MLF (Materials and Life science experimental Facility)
 - 陽子ビームによる液体水銀標的の核破砕で中性子を生成
- BL05 (Beam Line 05)
 - ▶ 基礎物理研究のためのビームライン

2014年5,6月に統計精度 数%のデータを取得した。

TPCデポジットエネルギー

200keV以上のエネルキーを 客とすイベントは1%未満	反応	初期エネルギー	終端位置 TPCの内部/外部	TPCに落とす エネルギー
250keV以上は、0.1%		0-60keV	内部	0-60keV
β信号が770keVを落とす	β崩壊	60-200keV	内部/外部	12-200keV
確率は無視できるレベル。		200-782keV	外部	8-30keV
	³ He吸収反応	770keV	内部	770keV
				Ph.D. Thesis Otono

モンテカルロシミュレーション : パラメータ調整

- Geant4ベース
- ▶ ビーム分布
 - ▶ X:Y方向 Imaging Plateで得た分布を直接実装
 - ▶ Z方向 CH₄吸収事象のZ軸:TOF分布を直接実装

▶ アノードゲイン

▶ ⁵⁵Fe線源 5.9keVのX線を用いてエネルギーキャリブレーション

ドリフトアテネーション

▶ ⁵⁵Fe線源照射位置 Y±75mm でのエネルギーの差

波形の導入

▶ 55Fe線源を基本波形とし重ね合わせで表現

ドリフト速度

▶ TPCを上下に貫通した宇宙線がTPC縦長さのドリフトにかかる時間。

モンテカルロシミュレーションの流れ

- Geant4で中性子をビーム分布に従う位置で崩壊させる。
- 崩壊生成物がTPCガスに落としたエネルギーから生成される電子・イオン対数を計算。

Y軸方向にドリフト(拡散・減衰)

-

-

⁵⁵Fe線源の作る波形を基本に到達電子数に応じて重ね合わせてイベントの波形を表現

波形情報からヒット情報、ADC値に落としこむ

実験装置側面図

実験装置上面図

Figure 3.1: A drawing of the experimental setup: (A) beam dump, (B) lead shield, (C) iron shield, (D) ⁶LiF-PTFE beam collimator, (X) Polarization branch, (Y) Unpolarization branch, (Z) Low divergence branch, (a) short-pass wavelength neutron filter, (b) guide coil, (c) spin flipper, (d) magnetic super mirrors, (e) spin flipper, (f) magnetic super mirrors, (g) neutron beam monitor, (1) Zr window, (2) neutron switching shutter, (3) electron suppression magnet, (4) cosmic veto counter, (5) lead shield, (6) vacuum chamber, (7) TPC, (8) electron suppression magnet, (9) ⁶LiF beam catcher, and (10) turbo molecular pump.

スピンフリップチョッパー

Spin flip chopper(SFC)を用いてJ-PARC/MLFの生成する40ms周期のパルス中性子 ビームを更に細かく切り分け、TPCの長さよりも短い"等速度"のバンチを作成する。

Fiducial領域を定義できる。

•

Kossakowskiらによる先行実験

原子炉中性子源を使用

-

- チョッパードラムと単結晶によるブラッグ反射で単色バンチを作成
- ▶ 統計量を増やしにくい

Figure 2.10: A schematic view of the experimental setup by Kossakowski et al. [11].

³He中性子吸収反応断面積

-

原子核による中性子吸収断面積は定数ではなく中性子速度に反比例する。 :: 中性子の断面積 と 速度の積は、中性子速度に寄らない定数になる。

 $\sigma v = \sigma_0 v_0$

代表して2200m/sの速度を持つ中性子(=熱中性子)を基準にまとめられることが多い。

本実験で用いるのは冷中性子であるが、

中性子寿命を求める際には熱中性子の断面積で代用できる。

$$\tau_n = \frac{1}{\rho \sigma_0 v_0} \frac{(N_{3_{\text{He}}}^{^{FG}} - \sum_i N_{3_{\text{He}}}^{^{BG}})/\varepsilon_{3_{\text{He}}}}{(N_{\beta}^{^{FG}} - \sum_j N_{\beta j}^{^{BG}})/\Pi_k \varepsilon_k}$$

τ _n	中性子寿命	N ^{FG} 3He	³ He吸収反応候補
ρ	³ He密度	Ν ^ϝ β	βシグナル候補
σ ₀	³ He吸収断面積	N ^{bg}	各種BGの計数
Vø	中性子速度	٤ _k	各種カット効率

β崩壊事象と³He吸収事象の切り分け:手法

- 『³Heガス100mPa導入データ』から『³Heガス非導入データ』を引算する。
- β崩壊のイベントはキャンセルされ³He吸収反応のイベントのみが残る。
- βシグナルを取り出す時と同じカットをかける。(エネルギーカット以外)
- β崩壊の信号領域に残っているものを漏込むイベント数として見積もる。
- 引算時の規格化は入射中性子量によって行い、ビームモニターを使用する。

β崩壊事象と³He吸収事象の切り分け:結果

