J-PARCにおける 中性子寿命精密測定実験

東京大学 ICEPP D2 山田崇人

21st ICEPP Symposium 2015/02/10

中性子寿命測定実験@J-PARCに関する 21st ICEPP Symposium での発表

- 山田 崇人 (東京大学)
 J-PARCにおける中性子寿命精密測定実験
 ・ 全体像、現状
 - 長倉 直樹 (東京大学)
 - 中性子寿命測定のための
 - 中性子フラックスモニターの性能評価
 - ・ 典型的な中性子検出器であるGas検出器with ³Heの性能評価
- 角 直幸 (九州大学)
 - J-PARC/BL05における中性子寿命測定実験:
 - 2014年データ解析
 - 現在の解析の進捗状況について

Outline

- Physics
 - CKM matrix
 - Big Bang Nucleosynthesis
- Principle
- Setup
 - Beam line
 - Device / Detector / DAQ
- Event Display
- Back ground subtraction
- Summary

中性子寿命の物理: CKM-matrix CKM行列のユニタリティの検証と中性子寿命

中性子寿命測定の方法ごとの差異 中性子寿命 τ_n = 880.3±1.1 sec (PDG2014) 中性子寿命測定では2つの測定手法により、8.4sec(3.8 σ)の差が 見えている。 In-beam method: Proton 検出, Fluxは別検出器

6

冷中性子をTime Projection Chamber (TPC)に導入し、 β-decay と ³He(n,p)³H 反応を同一検出器で同時に計測する。

Kossakowski,1989

 $\sigma v = \sigma_0 v_0$ σ_0 =cross section@v_0, v_0=2200[m/s]

7

本手法は、現在の世界平均を決めている他の測定手法で問題であった、 β崩壊検出器以外のフラックスモニターや、蓄積時の壁でのロスなどの系 統誤差要因を持たない、全く別の測定手法となっている。 この手法で、他の実験と同等の1 sec 精度の測定を目指す。

J-PARC / MLF / BL05

J-PARC Materials and Life Science Experimental Facility(MLF) Beam line BL05

Neutron optics and physics(NOP)

Joint Project between KEK and JAEA

MLF target

Neutron beam source

"NOP" / Polarization beam branch

Repetition rate	25Hz(40ms)	
Moderator	coupled (20 K)	
Beam size	10 cm x 4 cm	
Flux	3.9 x 10 ⁷ /s/ cm ² @1MW	
Polarization	95%	
Energy	1 ~ 20 meV	
wavelength	0.2 ~ 1 nm	
Velocity	500 ~ 2000 m/s	

他の研究テーマ Neutron EDM → CP Violation 大強度ブランチのCold neutronをUCNまで冷却 デバイス開発に役立てている Short-range gravity → Large Extra dimension 低発散ブランチのneutronを希ガスにあてて 小角散乱を検出。今年に物理ランの予定。

Setup on Beamline

"NOP"ビームラインの中性子寿命測定実験セットアップ

真空容器に収めたTPC

Time Projection Chamber(TPC) 高い検出効率・低バックグラウンドTPCの開発

Anode wire	29 of W-Au wires(+1720V)	
Field wire	28 of Be-Cu (OV)	
Cathode wire	120 of Be-Cu (0V)	
Drift length	30 cm (-9000V)	
Gas mixture	He:CO2=85kPa:15kPa	
TPC size(mm)	300,300,970	

β崩壊と³He反応に高検出効率

PEEK フレームと & inner ⁶Li 板を 利用したBG低減 S/N ~ 1:1

Data acquisition(DAQ)

- ハードウェアはKEKのCOPPER-Liteのシステム
- FADCでMWCPの全チャンネルの波形を取得。
- TPCのドリフト方向にトラックを引けば3方向の展開図の形でトラックを再構成が可能

Eather readout

Trigger input from other VME module

TDCは改造を施し、Time of Flightの取得や宇宙 線Veto信号の時間構造の取得などチャンネルごと に動作を振り分けて使用

Time of Flight と中性子バンチ位置

 ³He(n,p)³H反応を選別し、Time of Flightを比較することで中 性子バンチの位置を求めることができる

Time of Flight[ms]

Fiducial Volumeを定義 すると、そのVolume内 に中性子バンチが収 まっているTOFが決ま る。 イベントに対してバンチ 位置が決まる。

イベントの例

中性子バンチ から発生。 Q valueは Oから782keV の連続分布。 Energy depositは 10keV程度。

• 3He(n,p)3H

宇宙線/外来電子線

~3GeV

e

~1-10MeV

Q valueは 762keV(単色)を全 てTPCに落とす。 100kPaでは飛程 5cm。

¹²C(n, γ)¹³C recoil

Veto仕切れなかっ た宇宙線やコンプ トン散乱電子。 TPCを貫通する。 Energy deposit は10keV程度。

TPCのみでエネルギーとトラック情報・dE/dxを測定が可能

バックグラウンド事象量の評価

時間に依存しない成分 / TPC外からの放射線

- 時間に依存しない成分: TOF
 - Environmental background
 - Cosmic rays
 - Radiation inside/outside of TPC
- TPC外: Open/Closed of ⁶Li shutter
 - Prompt-γ from outside of TPC

↓ これらとは別にTPCのガスに由来するバックグラウンド があるが、50kPa/100kPaの別の測定で評価

これまで と これから

2014年のデータを用いてFirst resultsを出すこと、 今後に向けて高統計のためSpin Flip Chopperの アップグレードを計画中.

	present	Future development
Stat S/N	S/N~1 stat.<10s (2week)	SFC upgrade -> S/N~20 stat <1s (30days@1MW)
³ He 密度決定	~0.5% 体積傍聴法 ~0.7% マススペクトロメータ 2つの方法の間で 2%(20sec)のずれ	よりよい圧力計(精度~0.1%)や、 マススペクトロメータの安定性向上
β崩壊検出効率	>78%/wire >99.8% for 4 wires Correction<0.23% (2. 0s)	Development monitoring system for physics run
³ He event count (Time depend)	Correction ~2% +/- 0.2% (Preliminary)	More evacuation to suppress outgas. Check air leak.
ガス散乱	TPCでの散乱は~1-2%で、このコレクショ ンに対してのエラーを評価中	
³ He(n,p) ³ H 吸収反応断面積	J-PARCを使って我々で新たに断面積測定 実験をする計画	Better Accuracy than 0.13%

Summary

- BL05/MLF/J-PARCの"NOP" ビームラインにおいて、 1秒の精度での中性子寿命精密測定を行っている
 – cf) 880.3±1.1s (PDG2014)
- 中性子寿命はCKM matrixのユニタリティの検証やBig Bang Nucleosynthesisの検証に感度がある
- 本実験はIn-flight with electronで、他の寿命測定実験であるIn-flight with protonやUCN storageとは別の測定手法となっている
- 2014年のビームタイムで数10sec程度の統計量のデータを取得
- 2015年にfirst resultを目指して解析中