

MuSEUM and Its Systematic Uncertainty

Yasuhiro Ueno 上野恭裕 University of Tokyo Matsuda Lab. M1

- 1. MuSEUM (motivation, set up, uncertainties)
- 2. Muon beam profile monitor(BPM) and beam test

What Is MuSEUM Experiment?

- Muonium Spectroscopy Experiment Using Microwave
- Precise measurement of <u>muonium hyperfine structure</u> (MuHFS)
 @J-PARC

 $\Delta \nu(exp) = 4\,463\,302\,776(51)$ Hz (11 ppb) Liu, et al. PRL82 771(1999)

"There is a reason physicists are so successful with what they do, and that is they study the hydrogen atom and the helium ion and then they stop."

– R. P. Feynman

Why Muonium Hyperfine Structure

- Indeed! Hydrogen(-like) atom spectroscopy played an essential role in understanding physics (e.g.) Bohr Model, Lamb shift, bound QED... etc.
- **The finite-size of proton,** however, prevents physicists from testing quantum electrodynamics (QED).
- <u>Muonium</u> = positive muon (µ⁺) + electron (e⁻) → <u>purely leptonic</u>
 <u>(two 'point like' particles)</u>

Stringent Test of Bound-State QED

Muonium →Two point-like particles no proton structure effect

Determination of Muon Mass

An external parameter for muon g-2 experiment @J-PARC(E34) or Fermilab Contribution to new physics search

Experimental Set Up

Uncertainties

Previous experiment @Los Alamos Meson Physics Facility(LAMPF)

Liu, et al. PRL82, 711(1999)

Muon Beam Profile Monitor (BPM)

On-Line Beam Profile Monitor

Off-Line Beam Profile Monitor (Main Topic of today)

On-line Beam Profile Monitor

- Designed and developed by S. Kanda (U. Tokyo)
- Composite of very thin (~100µm) scintillation fibers

Fiber hodoscope for beam stability monitoring Pulse by pulse measurement of profile and intensity

S. Kanda. J-PARC symp.

Off-line 3D Beam Profile Monitor

- design and development by T. U. Ito, JAEA
- Composite of **Scintillator**, Gated Image Intensifier (IIF) and **CCD camera**
- Determination of muon stopping distribution

S. Kanda. J-PARC symp.

Beam Test @J-PARC

- Aim
 - Establish the operation of beam profile monitor
 - Evaluate the performance of the monitor

Reconstruction of 3D Distribution

Acquired image

Calibration for beam intensity is done

Future Prospects

Reconstruct the muon distribution

Operational test under magnetic field

Improvement of scintillation sector

Summary

- Aim of MuSEUM: determination of the values of muonium HFS
- Demonstration of beam profile monitor has been done
- Data analysis is ongoing
- Further study for muon stopping distribution and improvements follows

JPS @WASEDA, 21st MARCH, 2015 A.M.(DF room)

THANK YOU FOR YOUR ATTENTION!!

CPT and Lorentz invariance

- Hyperfine transition frequency can exhibit sidereal time oscillation as the earth rotates
- The bound of Lorentz violation parameter for muon sector (obtained from the previous Mu HFS)

 $\sqrt{(\tilde{b}_X^{\mu})^2 + (\tilde{b}_Y^{\mu})^2} \le 2 \times 10^{-23} \text{ GeV}.$

Muon mass

- LAMPF experiment (last MuHFS experiment) decided m_{μ} (120 ppb)
- CODATA $m_{\mu} \rightarrow 30 \text{ ppb}$
- CODATA = LAMPF+other theoretical calculations

muonium HFS VS positronium HFS

- $\mu_{\mu}/\mu_{p} \rightarrow$ contribution to g-2 experiment on μ +
- positronium HFS → strong recoil effect, annihilation effect
- positronium HFS uncertainty ~ppm A. Ishida, Ph.D. Thesis, (2014)
 while muonium HFS uncertainty ~10 ppb
- positronium HFS ~200GHz muonium 4GHz

μ_{μ}/μ_{p} ratio

- With these assumption, we can determine the muonproton magnetic moment ratio
 - QED is correct
 - No SUSY
 - α and R∞ is well determined (i.e. they are external parameters)

1s-2s VS HFS

- The energy scale of hyperfine splitting is much smaller than that of 1s-2s transition
- →better absolute energy resolution (i.e. better sensitivity to CPT and Lorentz violation)

Beam test - Validation-Gas Pressure

0.1 0.3 0.5 0.7 1.0 [atm]

Magnetic Field

- LAMPF experiment: the muon-stopping area excessed the area where magnetic field was precisely measured→Large uncertainty related to magnetic field
- MuSUEM suppress these uncertainties from both sides magnetic field and muon stopping distribution
- Best effort has been (will be) done to reduce magnetic-field uncertainty
- To suppress the uncertainty from muon stopping distribution, <u>Muon</u> <u>beam profile monitor is essential</u>

Why Muonium Hyperfine Structure

- Muonium HFS is a good probe for <u>bound QED theory</u>
- the experiment also determines <u>muon mass</u>
 →better input parameter for new muon g-2 experiment at J-PARC and Fermilab

$$\nu_{12} - \nu_{34} \propto m_{\mu}/m_p$$

Test of <u>CPT and Lorentz</u>
 <u>invariance</u>

R. Bluhm, et al. PRL84, 1098(2000)

$$40$$

 40
 20
 $4v = v_{12} + v_{34}$
 40
 40
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
Magnetic Field (T)
P. Strasser, *et al.* Proceedings for NUFACT 2014, to be published in the Proceedings of Science.

$$\nu_{12} + \nu_{34} = \Delta \nu$$

Statistic

- Last muonium HFS measurement was at LAMPF (<u>Los Alamos</u> <u>Meson Physics Facility</u>), USA
- The muonium HFS value by the LAMPF experiment is deteriorated by insufficient statistic
- H-Line is a new high-intensity muon pulse beam facility@ J-PARC
- The statistic acquired by H-line in four days is equal to the whole statistic of LAMPF experiment
- Reduction of systematic uncertainty is important