LHC-ATLASアップグレードにおける Micromegas検出器量産に向けた

品質評価方法の開発 Masahiro Yamatani

The University of Tokyo, ICEPP 21st ICEPP symposium 9 Feb 2015

Our contributions to ATLAS phase1 upgrade

Japan group provides Resistive Strips foils.

Resistive (Strip) foils

Resistive Strips

- Perform as anode
- \rightarrow Fine strips(~400 μ m pitch)
- Spark-protected
- \rightarrow High resistivity(~20M Ω /strip cm)

There are two types of resistive foils.

Sputter type

- Fine structure (~10 μm) can be formed.
- · High uniformity.
- Takes time to make.
 Expensive.

Screen Print type

- Fine structure(~10μm) is difficult.
- · Low uniformity.
- Cheap and fast.

Decide final design based on the results of prototype MicroMegas detector

MicroMegas detector mass production (2015 Summer~)

Mass production will start this summer.

Typical size of resistive foil.

Quality assurance

Assure the quality of resistive foil produced in Japan.

- ①Resistivity ~ 20MΩ per 1cm strip
- 2Strip pattern ~ no defect

→····We are developing the methods to check them

Measuring Resistivity

Measuring resistivity two-dimensionally

Foil • Measuring resistivity between arbitrary two probes

1st generation (not two dimensionally)

Probe

Strip Pattern check

Scan Resistive foil and analyze it by ROOT(using TASImage)

Results of error detection

Error detection algorithm

1 Generate Reference image based on images around it.

2 Take difference between Reference image and Target image.

Prototype-model MicroMegas detector.

→MicroMegas group make prototype-model MicroMegas detector called Module-0 before mass production.

- Module-0 construction has already started.
 - → Japan group provides Resistive foil.

Tests of our method in Module-0 production

First 36 foils for Module-0 arrived at KEK (3 Feb)

→We measured foil's resistivity using our method.

Part of measurement results

 $R_{mean} = 7.012\pm1.341$ (M Ω /1cm strip)

Summary

- Japan MicroMegas group provide Resistive foil.
- We are developing the method to check the quality of Resistive foils.
 - Tests of the method using Module-0 foils are going on now.

Future Plan

 We establish the quality check methods using the results of Module-0 test as reference.

Back up

Printing procedure (Matsuda Screen)

Resistive paste is put on

Squeegee is controlled automatically

Printing is done

Drying with 170 degree, 2H.

A. Ochi, ATLAS MM weekly 2015/01/27

Liftoff process using sputtering

(Laytech inc.)

- Very fine structure (a few tens micro meter) can be formed using photo resist. @PCB company (same as PCB)
- Surface resistivity can be controlled by sputtering material and their thickness

A. Ochi. RD51 Mini week

19/06/2014

Photo resist

surface strips)

Substrate (polyimide)

Metal/Carbo

(reverse pattern of

Other methods for optical analysis

Occupare with reference.

↑BMP ↓ TH2DHistgram

Resistivity

How to measure Resistivity → using voltage dividing.

Measurement method using voltage dividing

Combined resistance of data logger and foil is

$$\mathbf{r} = \frac{\mathbf{R_x} \mathbf{R_g}}{\mathbf{R_x} + \mathbf{R_g}}$$

$$\begin{split} \mathbf{V_f} &= \frac{\mathbf{r}}{\mathbf{r} + \mathbf{R_a}} \mathbf{V_0} \\ \rightarrow & \mathbf{r} = \frac{\mathbf{V_f}}{\mathbf{V_0} - \mathbf{V_f}} \mathbf{R_a} \\ \rightarrow & \frac{\mathbf{R_x} \mathbf{R_g}}{\mathbf{R_x} + \mathbf{R_g}} = \frac{\mathbf{V_f}}{\mathbf{V_0} - \mathbf{V_f}} \mathbf{R_a} \end{split}$$

Resistivity of data logger

$$\mathbf{R}_g = 1.06[\mathbf{M}\Omega]$$
*R = 0.56M Ω

$$\begin{split} \mathbf{R_x} &= \frac{\mathbf{R_a}\mathbf{R_g}\mathbf{V_f}}{\mathbf{R_g}(\mathbf{V_0} - \mathbf{V_f}) - \mathbf{V_f}\mathbf{R_a}} \\ \mathbf{R_g} &= \frac{\mathbf{R_a}\mathbf{R_x}\mathbf{V_f}}{\mathbf{R_x}(\mathbf{V_0} - \mathbf{V_f}) - \mathbf{V_f}\mathbf{R_a}} \end{split}$$

Error detection(ESL Screen Print, using same algorithm)

