<u>次世代電子陽子加速器LHeCにおける</u> <u>Hbb結合測定感度の研究</u>

H→bb 崩壊モード

ヒッグス機構によるとヒッグス粒子と各素粒子の結合定数は、

その素粒子の質量に比例していると考えられている

➡各結合定数を精密に測定し、ヒッグス機構の正しさを検証する必要がある

2

LHeC計画

- 現在計画段階の次世代電子陽子衝突型加速器
- •電子陽子DIS事象における<mark>陽子内部構造の精密測定(low-x)</mark>を目的としている
- •新しく電子加速器を建設し、LHCの陽子ビームと組み合わせる
- •7 TeVの陽子ビーム、60 GeVの電子ビームの衝突を想定
- 基本設計では10 fb⁻¹/year、High-lumi option では100 fb⁻¹/year
- ・先行する電子陽子衝突型加速器HERAよりも高い重心系エネルギー、
 ルミノシティでの運転が可能
 ルミノシティ Interpretion Scattering facilities
- さらに将来的な計画として
 LHCをさらに巨大化した
 FCC(Future Circular Collider)
 においてもep衝突実験を検討
 - 50 TeVの陽子ビーム
 - 60 GeVの電子ビーム

LHeC計画

電子加速器

- ERL(Energy Recovery Linac)
- •線形加速器と周回リング
- 60 GeVまで電子を加速
- 衝突に使われなかった電子は リングを周回し減速、その エネルギーが次の加速に使われる

非対称な検出器設計

・陽子ビーム方向は
 よりビーム軸に近い所まで
 検出感度がある

入射電子がニュートリノに変わるCC(Charged Current)事象、
 電子のまま散乱されるNC(Neutral Current)事象

- 生成されるハドロンが少ない'クリーン'なイベントが特徴
- ➡H→bb崩壊モードの精密な測定が可能

• MCシミュレーションを用いてLHeCにおけるCC:H→bb事象の 測定感度を見積もることが目的

- •7 TeVの陽子ビーム、60 GeVの電子ビーム、ヒッグスの質量125 GeV
- •LHeCの検出器を想定したシミュレーション
- 100 fb⁻¹の統計を想定

生成したイベント

	$\sigma(\mathrm{pb})$	Number of samples	$\frac{N}{\sigma}$ (fb ⁻¹)
CC:H→bb	0.063	0.1M	1587
CC:bkg	5.9	0.6M	101.6
NC:bkg	28	ЗM	107.2

事象選別

- Number of jet
 N_{jet} ≥ 3
- Number of b-jet
 N_{b-jet} ≥ 2
- missing E_T E_{T,miss} > 20 GeV
- total of E_T
 E_{T,total} > 100 GeV
- Number of electron $N_{electron} = 0$
- 運動量移行 Q² > 400 GeV² y < 0.9

b-tag efficiency model \cdot coverage : $|\eta| < 3 \cdot c$ -jet misID : 10% \cdot b-jet ID : 60% \cdot light-jet misID : 1%

事象選別

質量再構成

- ・全カット適用後、 |η |が小さい順に2本のb-jetを選択、質量再構成
- •シグナル領域を[100, 130]GeVに設定

まとめと今後

- ・LHeCは現在計画段階の次世代電子陽子衝突型加速器
- •電子陽子DIS事象における陽子内部構造の精密測定(low-x)が目的
- ・生成されるハドロンが少ない'クリーン'なイベントが特徴であり
 H→bb崩壊モードを精度よく観測することが可能
- MCシミュレーションを用いた研究を行い、LHeCにおける Hbb結合測定精度は約4%という結果が得られた
- 今後は検出器の設計をより細かく検討
 - パラメータをより細かく設定できる検出器シミュレーション(Delphes)
 - 検出器のcoverage, resolution, B-taggingなどを検討
- •LHeCは2024年の運転開始を目指し現在設計・検討が進行中

back up

他の分布

他の分布

Ο

-0

Q²

他の分布

Generator cut

signal

-jet、荷電レプトン、光子に対して $|\eta| < 10$

- CC: bkg
 - -jet、荷電レプトン、光子に対して $|\eta| < 10$
 - -jetに対して pr > 10 GeV
 - 全てのjetの組で M_{jj} > 60 GeV となる組が1つ以上存在
 - NC: bkg
 - jetに対して p⊤ > 12 GeV, b-jetに対して p⊤ > 15 GeV, 荷電レプトンに対して p⊤ > 0.01 GeV
 - jetに対して $|\eta| < 5.5$, b-jetに対して $|\eta| < 4$, 荷電レプトンに対して $4 < |\eta| < 10$
 - 光子に対して | η | < 10
 - 全てのjet (b-jet)の組で M_{jj} > 80 (100) GeV となる組が1つ以上存在

検出器シミュレーション

LHeCの検出器を想定

- Coverage
 - Tracking : $|\eta| < 4.7$
 - Calorimeter : $|\eta| < 5$

Calorimeter resolution

-EM: 1% ⊕ 10% / √E

-HM: 40% / √E

ジェット再構成アルゴリズム

- k⊤アルゴリズム(ΔR = 0.9)

B-tag

- Coverage : $|\eta| < 3$
- b-tag 効率: 60%
- c-jet 誤識別率: 10%

- その他のjet 誤識別率:1%

trackは計算せず 効率に従って確率的に b-jetを同定

LHCにおけるヒッグス粒子探索

18

LHeC

19

FCC

- √s = 100 TeV
- 磁場16 T→周長100 km 20 T→ 80 km
- pp, ee, ep collider が 検討されている

今後

0

-0

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	RF Proto Type Development												
				RF Production and Test Stand Operation									
			Magn Prese	et ries									
				Magnet Production and Testing									
				Legal Prepa	ration								
						Civil Engineering							
									Infra- struct	ure			
										Install	ation		
												Opera	tion