How to find a Higgs boson

Heather M. Gray, CERN

?higgs discovery (発見)

Seminar on 4 July 2012 by the ATLAS and CMS collaborations

this talk (この話)

- NOT about the Higgs discovery
- NOT to discuss the latest Higgs results
 - There are many and they are interesting
 - Ask me about them later if you like
- But rather, to try to explain how we go about doing a Higgs analysis using a specific example
- Example: <u>http://link.springer.com/article/10.1007/</u> JHEP01(2015)069

choose your channel l (あなたのチャンネルを選択)

choose your channel l (あなたのチャンネルを選択)

choose your channel II (あなたのチャンネルを選択)

choose your channel II (あなたのチャンネルを選択)

build a billion dollar collider (十億ドルの加速器の建設)

and a couple million dollar detectors (そして数百万ドルの検出器)

CMS (Compact Muon Solenoid)

ATLAS (A Toroidal ApparatuS)

reconstruction (再構築)

- Reconstruct electrons, muons, photons from energy deposits
- Reconstruct jets and tag bjets with sophisticated algorithms
- Use conversation of (transverse) energy to calculate the missing energy (MET)

jet reconstruction (ジェット再構築)

jet reconstruction algorithms group energy deposits together in different ways to form jets

b-jet reconstruction (ビージェット識別)

b-quarks have a longer lifetime than other elementary particles

identify b-jets by reconstructing displaced vertices from tracks

choose your cuts

- Need events containing two b-jets, 1 lepton and MET
- $j_1p_T > 45 \text{ GeV}; j_2p_T > 20 \text{ GeV}, \text{MV1c} > 80\%$
- I $p_T > 20$ GeV; isolated, MET > 20 GeV

choose discriminating variable

The better the discriminating variable, the larger the separation between signal and background For the Higgs, a good variable is the **mass**

background

(背景)

- Background events are other events that look just like signal
- Two types of background
 - Reducible

•

- Experimental: better isolation cut, improved b-tagging algorithm
- Physics: different final state, e.g. additional lepton, jets
- Irreducible = same final state as signal
 - Often different kinematics or need to apply kinematic cuts

background uncertainty (背景の不確実性)

- Large uncertainties -> more difficult to extract the signal
- Uncertainties can be both statistical and systematic
- Decrease impact by either reducing background or reducing uncertainty: e.g. estimate in a control region

systematic uncertainties

Z+jets		
Zl normalisation, 3/2-jet ratio	5%	
Zcl 3/2-jet ratio	26%	
Z+hf 3/2-jet ratio	20%	
Z + hf/Zbb ratio	12%	
$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\mathrm{T}}^V, m_{bb}$	S	
W+jets		
Wl normalisation, 3/2-jet ratio	10%	
Wcl, W+hf 3/2-jet ratio	10%	
Wbl/Wbb ratio	35%	
Wbc/Wbb, Wcc/Wbb ratio	12%	
$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\mathrm{T}}^V, m_{bb}$	S	
$t\overline{t}$		
3/2-jet ratio	20%	
High/low- $p_{\rm T}^V$ ratio	7.5%	
Top-quark $p_{\rm T}, m_{bb}, E_{\rm T}^{\rm miss}$	S	
Single top		
Cross section	4% (s-,t-channel), $7%$ (Wt)	
Acceptance (generator)	3%– $52%$	
$m_{bb}, p_{\rm T}^{b_1}$	S	
Diboson		
Cross section and acceptance (scale)	3%– $29%$	
Cross section and acceptance (PDF)	2%– $4%$	
m_{bb}	S	
Multijet		
0-, 2-lepton channels normalisation	100%	
1-lepton channel normalisation	2%– $60%$	
Template variations, reweighting	S	

improving sensitivity: mass resolution (質量分解能)

- The better the mass resolution, the smaller the amount of background that needs to be considered
- 14% improvement in resolution

- Simple idea: add cuts to divide events into categories
 - Don't throw away any events
 - Separate out high S/B regions
 - Information to constrain backgrounds
- For VH(bb) we categorise depending on the number of jets x Higgs p_T x b-tagging quality
 - Huge improvement to sensitivity; largely from background constraint

Process	Scale factor
$t\bar{t}$ 0-lepton	1.36 ± 0.14
$t\bar{t}$ 1-lepton	1.12 ± 0.09
$t\bar{t}$ 2-lepton	0.99 ± 0.04
Wbb	0.83 ± 0.15
Wcl	1.14 ± 0.10
Zbb	1.09 ± 0.05
Zcl	0.88 ± 0.12

result

- Look for an excess over background prediction
- Fit rate with respect to the Standard Model prediction
 - $\mu = \sigma / \sigma_{SM}$
- Small excess, but a little smaller than the SM prediction
 - More data needed !

ATLAS √s=7 TeV, ∫Ldt=4.7 fb⁻¹; √s=8 TeV, ∫Ldt=20.3 fb⁻¹

conclusion

- A lightening tour of the >20 years of work it took to probe the Higgs coupling to b-quarks
- Discussed some key aspects of analysis design
 - Discriminating variable selection
 - Mass resolution
 - Background estimate
 - Systematic Uncertainties
- For bb, we're not quite there yet, but getting very close
 - Perhaps one of you, will be the one to observe it?

