Belle II実験におけるシリコンストリップ型 崩壊点検出器の機械精度の追求と性能評価

東京理科大学 修士1年 吉延 俊輝 @21st ICEPP Symposium

<u>Belle II実験</u>

- 茨城県つくば市にある高エネル ギー加速器研究機構(KEK)で行 われる素粒子実験。
- <u>2017年</u>物理ラン開始予定。
- 電子・陽電子衝突型加速器
 SuperKEKBで大量のB中間子対を 生成し、それらの崩壊事象を
 Belle II測定器で測定。
- 重心エネルギー10.58GeV
- Belle実験の50倍である50ab⁻¹の 積分ルミノシティで荷電ヒッグス 探索や新物理の寄与によるCPの 破れなどを探索。

崩壊点検出器 VXD

charged particle

21st ICEPPSvm

- 20µmの崩壊点位置分解能
- CDC(Central Drift Chamber)とともに 崩壊点と軌跡を再構成
- PXD(L1,L2) + SVD(L3,L4,L5,L6)
- PXD : Pixel Detector
 - DEPFETピクセル半導体検出器

- SVD : Silicon Vertex Detector
 - <u>ストリップ型</u>シリコン検出器(DSSD)

Belle II検出器

<u>SVD検出器: Silicon Vertex Detector</u>

135mm

- VXDの3~6層がSVD
 - L3(Melbourne@Australia)
 - L4(TIFR@India)
 - L5(HEPHY@Austria)
 - L6(IPMU@Japan)

(東京大学Kavli IPMU)

<u>ラダー構造</u>

- 1. それぞれのラダーで粒子の 通過位置を2次元で検出
- 2. 複数のラダーの通過位置 から軌跡を求める
- 3. それらの軌跡のもっともらし い交点が崩壊点

Siストリップセンサー:DSSD

DSSD = Double-sided Silicon Strip Detector

	Barrel	Forward sensors		
Layer	3 4 to 6		4 to 6	
Shape	rectangular		trapezoidal	
# strips p-side	768	768	786	
# strips n-side	768	512	512	
# intermeditate strips p-side	767	767	767	
# intermeditate strips n-side	767	511	511	
Pitch p-side	50 µm	75 µm	75 50 µm	
Pitch n-side	160 µm	240 µm	240 µm	
Area (total)	5048.90 mm ²	7442.85 mm ²	6382.6 mm ²	
Area (active)	4737.80 mm ² (93.8%)	7029.88 mm ² (94.5%)	5890 mm ² (92.3%)	
Base material	Si n-type 8 kΩcm			
Full depletion voltage (FD)	~ 60V (<120V)		40 V (typ), 70 V (max)	
Polysilicon resistor	4 MΩ (min.), 10 MΩ (typ.)		10 MΩ (min), 15 ±5 MΩ (max)	

Specifications of the three DSSD types

Layer 6のDSSD

長方形DSSD

- 長方形DSSD 4枚,台形DSSD
- 厚み 300µm
 - のストリップ

台形DSSD

ピッチはz方向が160-240µm,ro 方向が50-75µm

<u>End Mount によるMount</u>

- EM(End Mount)とKokeshi-pinによりラダー端をEnd ringに固定
- Kokeshi-pinをセットネジで固定(ネジを締めるほど下に押される)

- 固定部の一端はスライド機構が備えられている
- 熱膨張・収縮によるラダーの変形を緩和する目的
 - End Mountを通してEnd ringに熱を逃がしたい→スライド部の負荷大きくしたい

VS

8

- ラダーの変形を防ぎたい→<u>スライド部分の負荷を弱くしたい</u>

「ラダーの変形を防ぐためにスライド部分の負荷をできるだけ弱くしたい」

V.S.

「熱伝導の確保からスライド部分の負荷を出来るだけ強くしたい」

130gWでスライドする負荷が熱伝導の観点から許容範囲

しかし…変形を防ぐのに130gWが十分かどうかは証明されていない!!

ラダー端にどのくらいの力がかかると ー端がどれだけ変位して ラダーがどのように変形するか を調べる必要がある。

• スライド機構の働きが十分か検証するための測定

- スライド部の変位に対してどのようにラダーが変形するか

- 1. ラダー端のエンドマウントを内側からマイクロメータで20µmずつ(200µmまで)押す
- 2. 4枚のSiセンサーのそれぞれ四隅の座標(z,r)を測定

Feb. 9th 2015

測定方法

21st ICEPP Symposium

<u>ラダー端の変位と変形の測定</u>

横から 手前のラインと奥側のラインに分けて結果を表示する

<u>測定結果</u>

- スライド部に近いセンサー2枚はほぼ平行移動。
- 固定部に近いセンサー2枚は線形的に傾きが増加。
- ・ 変位dz=0~0.10 mmのあたりの変形が非線形的。
 > どうやら130gWでのラダー端の変位はdz=0.02~0.05mmあたり...
- 200µm押したとき、どのセンサーとも手前側、奥側で50µmの変位量の差があり、変化の仕方がわずかに違う。
 - ▶ センサーの初期位置が違うことによる影響?
 - →より機械精度の良い(デザイン通りの)ラダーの製作の必要
 - ▶ ラダーのデザインがビーム軸に対して左右対称でない(Siセンサーは左右対称 だがセンサー上のフレキシブル基板が左右非対称)ことが影響?

→<u>フレキ基板を貼る前後での変形の比較</u>

まとめと今後の課題

<u>まとめ</u>

- ラダー端を20µmずつ押し、それに対するラダーの変形を測定した。
- 今回の測定で変形のおおまかな様子がわかった。(→変位量の非対 称性の原因追及、測定回数を増やし変形の様子を関数化)
- 130gWでの変形を考えるための最初のステップを終わらせた。
 今後の課題
- 130gWではどれだけラダー端が変位し、それが今回の結果からどういった変化を生み出すか
- その変形から、130gWでスライド機構がはたらくことが適切か
- 実際の実験環境での温度変化でどれだけのラダーの変形原因があり得るか(ラダーやエンドリングの熱膨張、接着剤の変形、重力によるラダーの歪み、etc...)

Back up

<u>Belle SVDとBelle II SVDの違い</u>

		Belle II	Belle	
X-angle	9	83mra	d	22mrad
Beam I	Pipe	r = 10mm		15mm
DEPFE	Г			
	Layer 1	lr = 14mm		
	Layer 2r = 22mm			
DSSD				
	Layer 3	8r = 38mm		20mm
	Layer 4	lr = 80mm		43.5mm
	Layer 5	5r = 104mm	70mm	
	Layer 6	6r = 135mm		88mm

PXDとは

- PXDはDEPFET(=Depleted Field Effect Transistor)と言われる半導体 素子を採用している。空乏層で励起 された電荷をそのままトランジスタ で増幅するような構造をしている。
- 外部のゲート(external gate)をON にすると、内部のゲート(internal gate)に蓄えられた電化に比例する 電流が流れる。このQ-I変換率がゲ インに対応し、その値は~0.5nA/e
- 内部に蓄えられた電荷は、クリアー
 用のFETによってdischargeされる。

<u>SVDラダーのマウント</u>

- 作成した各ラダーの端をEnd ringにマウント
- End Mount(ラダーの端の固定部)をKokeshi-pinとセットネジで固定

